Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body ...Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body fluids is complicated because of limited commercially available p H sensors.Hence,we aimed to prepare a flexible,transparent,disposable,userfriendly,and economic strip-based solid-state p H sensor using palladium nanoparticles(Pd NPs)/N-doped carbon(NC)composite material.The Pd NPs/NC composite material was synthesized using wool keratin(WK)as a precursor.The insitu prepared Pd NPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton withπ–πarrangement at the mesoscale level,which mimics the A–B type polymeric structure,and hence,is highly susceptible to H+ions.The optimized carbonization condition in the presence of Pd NPs showed that the material obtained using a modified Ag/Ag Cl reference electrode had the highest p H sensitivity with excellent stability and durability.The optimized p H sensor showed high specificity and selectivity with a sensitivity of 55 m V/p H unit and a relative standard deviation of 0.79%.This study is the first to synthesize Pd NPs using WK as a stabilizing and reducing agent.The applicability of the sensor was investigated for biological samples,namely,saliva and gastric juices.The proposed protocol and material have implications in solid-state chemistry,where biological material will be the best choice for the synthesis of materials with anticipated performance.展开更多
An enormous number of wireless sensing nodes(WSNs)are of great significance for the Internet of Things(IoT).It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanica...An enormous number of wireless sensing nodes(WSNs)are of great significance for the Internet of Things(IoT).It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanical vibration energy.A harmonic silicone rubber triboelectric nanogenerator(HSR-TENG)is developed focusing on ubiquitous constant working frequency machinery.The unique design of the strip serving as a flexible resonator realizes both soft contact and high and broadband output.The significant factors influencing the 1^(st)-order vibration mode of the strip are developed for realizing the harmonic frequency adaptation to external vibration.The surface treatment of the strip improves the output performance of HSR-TENG by 49.1%as well as eliminates the adhesion effect.The HSR-TENG is able to achieve a voltage output bandwidth of 19 Hz under a vibration strength of 3.0,showing its broadband capability.The peak power density of 153.9 W/m^(3)is achieved and 12×0.5 W light-emitting diodes(LEDs)are successfully illuminated by the HSR-TENG.It can continuously power a temperature sensor by harvesting the actual compressor vibration energy.In brief,the HSR-TENG provides a promising way for constant frequency vibration energy harvesting,so as to achieve in-situ power supply for the WSNs in the vicinity.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51502253,U1405226,21503175,and 21705135)Natural Science Foundation of Guangdong Province,China(Grant No.2016A030310369)Natural Science Foundation of Fujian Province,China(Grant No.2017J01104)。
文摘Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body fluids is complicated because of limited commercially available p H sensors.Hence,we aimed to prepare a flexible,transparent,disposable,userfriendly,and economic strip-based solid-state p H sensor using palladium nanoparticles(Pd NPs)/N-doped carbon(NC)composite material.The Pd NPs/NC composite material was synthesized using wool keratin(WK)as a precursor.The insitu prepared Pd NPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton withπ–πarrangement at the mesoscale level,which mimics the A–B type polymeric structure,and hence,is highly susceptible to H+ions.The optimized carbonization condition in the presence of Pd NPs showed that the material obtained using a modified Ag/Ag Cl reference electrode had the highest p H sensitivity with excellent stability and durability.The optimized p H sensor showed high specificity and selectivity with a sensitivity of 55 m V/p H unit and a relative standard deviation of 0.79%.This study is the first to synthesize Pd NPs using WK as a stabilizing and reducing agent.The applicability of the sensor was investigated for biological samples,namely,saliva and gastric juices.The proposed protocol and material have implications in solid-state chemistry,where biological material will be the best choice for the synthesis of materials with anticipated performance.
基金supported by the National Natural Science Foundation of China(Nos.52101345,52101400)the Scientific Research Fund of Liaoning Provincial Education Department(No.LJKZ0055)+1 种基金the Dalian Outstanding Young Scientific and Technological Talents Project(No.2021RJ11)the Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment(No.3132023354).
文摘An enormous number of wireless sensing nodes(WSNs)are of great significance for the Internet of Things(IoT).It is tremendously prospective to realize the in-situ power supply of WSNs by harvesting unutilized mechanical vibration energy.A harmonic silicone rubber triboelectric nanogenerator(HSR-TENG)is developed focusing on ubiquitous constant working frequency machinery.The unique design of the strip serving as a flexible resonator realizes both soft contact and high and broadband output.The significant factors influencing the 1^(st)-order vibration mode of the strip are developed for realizing the harmonic frequency adaptation to external vibration.The surface treatment of the strip improves the output performance of HSR-TENG by 49.1%as well as eliminates the adhesion effect.The HSR-TENG is able to achieve a voltage output bandwidth of 19 Hz under a vibration strength of 3.0,showing its broadband capability.The peak power density of 153.9 W/m^(3)is achieved and 12×0.5 W light-emitting diodes(LEDs)are successfully illuminated by the HSR-TENG.It can continuously power a temperature sensor by harvesting the actual compressor vibration energy.In brief,the HSR-TENG provides a promising way for constant frequency vibration energy harvesting,so as to achieve in-situ power supply for the WSNs in the vicinity.