Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A ...A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A discrete-time system model with uncertainty is introduced to depict the time-varying ATM networks. Based on the system model, an asymptotically stable sliding surface is designed by linear matrix inequality (LMI). In addition, a novel discrete-time reaching law that can obviously reduce chatter is also put forward. The proposed discrete-time variable structure controller can effectively constrain the oscillation of allowed cell rate (ACR) and the queue length in a router. Moreover, the controller is self-adaptive against the uncertainty in the system. Simulations are done in different scenarios. The results demonstrate that the controller has better stability and robustness than the traditional binary flow controller, so it is good for adequately exerting the simplicity of binary flow control mechanisms.展开更多
A decentralized variable-structure robust control technique for uncertain large-scale systems is proposed and using the proposed technique. a decentralized robust control system for uncertain flexible space station is...A decentralized variable-structure robust control technique for uncertain large-scale systems is proposed and using the proposed technique. a decentralized robust control system for uncertain flexible space station is designed. The designed robust control system can guarantee the stability and safe operation of space station in a wide range of system parameters variations and highly intensive external disturbances. In addition. because decentralized adaptation laws for the upper bounds of system uncertainties are introduced, the control technique is particularly applicable to the uncertain flexible space station with complex structure whose bounds of system uncertainties can not be determined or vary with time.展开更多
The increase of satellite’s dimensions has caused flexibility and formation of uncertainty in their model. This is because of space missions being more complex and using light moving structures in satellites. Satelli...The increase of satellite’s dimensions has caused flexibility and formation of uncertainty in their model. This is because of space missions being more complex and using light moving structures in satellites. Satellites are also encountered with various circumferential disturbance torques. This uncertainty in model and disturbance torques will cause undesirable performance of satellites’ attitude control system. So, for attitude control of these satellites, those methods should be used which are robust to uncertainty of the plant’s model and can reject the effects of disturbances and the measurement noise. One of these methods is the robust control design method. But, because of pole’s place of these satellite’s dynamics equations, the designing procedure of robust control will face difficulties. In this paper, by using an internal feedback as a novel idea, the satellite’s dynamics equations are changed in such a way that the poles will be placed in proper locations. Then, for these new equations, by regarding the effects of flexibility as uncertainty and considering the uncertainty in inertia matrix of satellite, an H∞ controller has been designed and for better performance, a μ-controller has been improved. Afterwards, these two controllers are analyzed and compared for the original dynamic equations, not for the modified ones. Also, for comparison, a classic controller has been also designed for the original plant and eventually all these three controllers are compared with each other.展开更多
This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The cont...This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The control configuration included the attitude controller based on VSOFC method and vibration attenuator designed by constant-gain negative velocity feedback control. The attitude controller consisted of a linear feedback term and a discontinuous feedback term. With the presence of this attitude controller, an additional flexible control system acting on the flexible parts can be designed for vibration control. Compared with conventional proportional-derivative (PD) control, the developed control scheme guarantees not only the stability of the closed-loop system, but also yields better performance and robustness in the presence of parametric uncertainties and externai disturbance. Simulation results are presented for the spacecraft model to show the effectiveness of the proposed control techniques.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In...A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control and the vibration suppression sub-systems are designed separately using the lower order model. The design of attitude controller is based on the variable structure control (VSC) theory leading to a discontinuous control law. This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system. To actively suppress the flexible vibrations, the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages. In addition, a special configuration of actuators for three-axis attitude control is also investigated: the pitch attitude controlled by a momentum wheel, and the roll/yaw control achieved by on-off thrusters, which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history. Numerical simulations performed show that the rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.展开更多
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm...In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.展开更多
The synchronization problem under two cases is considered. One is that the bound on the uncertainty existing in the controller is known, the other is that the bound is unknown. In the latter case, the simple adaptatio...The synchronization problem under two cases is considered. One is that the bound on the uncertainty existing in the controller is known, the other is that the bound is unknown. In the latter case, the simple adaptation laws for upper bound on the norm of the uncertainty is proposed. Using this adaptive upper bound, a variable structure control is designed. The proposed method does not guarantee the convergence of the adaptive upper bound to the real one but makes the system asymptotically stable.展开更多
The variable structure controller is designed for a class of nonlinear uncertain time-delay system by using robust observer, and incorporating H-infinity control technique, the controller can guarantee the H-infinity ...The variable structure controller is designed for a class of nonlinear uncertain time-delay system by using robust observer, and incorporating H-infinity control technique, the controller can guarantee the H-infinity performance of sliding mode dynamics and satisfy the reaching condition, which also does not require uncertainties to satisfy matching condition and linear boundary condition. The simulation example is given to illustrate the method.展开更多
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be...This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunnv function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.展开更多
This paper presents some recent developments in modelling and numerical analysis of piezoelectric systems and controlled smart structures based on a ?nite element formulation with embedded control. The control aims at...This paper presents some recent developments in modelling and numerical analysis of piezoelectric systems and controlled smart structures based on a ?nite element formulation with embedded control. The control aims at vibration suppression of the structure subjected to external disturbances, like wind and noise, under the presence of model inaccuracies, using the available measurements and controls. A smart structure under dynamic loads is analysed and comparison between results for beam with and without control is made. The numerical results show that the control strategy is very effective and suppresses the vibrations of the structure.展开更多
The nonlinear dynamic system of spacecraft with uncertainty and coupling is analyzed and its general dynamical equation is given.The decoupling-ability and controllability are proved.Aiming at this system,a new nonlin...The nonlinear dynamic system of spacecraft with uncertainty and coupling is analyzed and its general dynamical equation is given.The decoupling-ability and controllability are proved.Aiming at this system,a new nonlinear decoupling controlling method is put forward by synthetically using the variable structure and fuzzy theory.The simulation results show that this method is effective in tracking performances under the existence of uncertainty and outer disturbance.展开更多
This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person t...This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.展开更多
The flexible satellites with large solar panels require strong robustness of attitude control systems, so that good dynamic properties and high precision of attitude orientation and adjustment can be maintained even u...The flexible satellites with large solar panels require strong robustness of attitude control systems, so that good dynamic properties and high precision of attitude orientation and adjustment can be maintained even under the action of various uncertainties. As solar panels have been placed on some new type of our satellites, it is necessary to study the control schemes and the corresponding experiments from the viewpoint of engineering.展开更多
This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the co...This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.展开更多
The robust control of spacecraft during approach for docking is studied by first giving the relative motion equations for trajectory and attitude coupling of two spacecraft and then accomplishing the control design of...The robust control of spacecraft during approach for docking is studied by first giving the relative motion equations for trajectory and attitude coupling of two spacecraft and then accomplishing the control design of the tracking vehicle using the feedback linearization method and the variable structure theory. Both theoretical analysis and simulation results indicate the robust controller proposed can guarantee non impact docking of two spacecraft even when the object vehicle is subjected to an external interference.展开更多
A variable structure based control scheme was proposed for Active Queue Management(AQM) by using sliding model algorithm and reach law method. This approach aims to address the tradeoff between good performance and ro...A variable structure based control scheme was proposed for Active Queue Management(AQM) by using sliding model algorithm and reach law method. This approach aims to address the tradeoff between good performance and robustness with respect to the uncertainties of the round-trip time and the number of active connections. Ns simulations results show that the proposed design significantly outperforms the peer AQM schemes in terms of fluctuation in the queue length, packet throughput, and loss ratio. The conclusion is that proposed scheme is in favor of the achievement to AQM objectives due to its good transient and steady performance.展开更多
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of...This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.展开更多
Combining the characteristics of servo systems , tracking variable structure control law is studied. Two kinds of new variable control law , the generalized exponential approaching vari- able structure control law and...Combining the characteristics of servo systems , tracking variable structure control law is studied. Two kinds of new variable control law , the generalized exponential approaching vari- able structure control law and the integral variable structure control law are put forward for dis- crete time domain. Taking pump-controlled-motor rotational speed servo system for example , the experiment investigation and digital simulation of integral variable structure control law for dis- crete time domain are performed , the rightness of conclusions are verified.展开更多
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金the National Natural Science Foundation of China (No.60274009)Specialized Research Fund for the DoctoralProgram of Higher Education (No.20020145007)
文摘A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A discrete-time system model with uncertainty is introduced to depict the time-varying ATM networks. Based on the system model, an asymptotically stable sliding surface is designed by linear matrix inequality (LMI). In addition, a novel discrete-time reaching law that can obviously reduce chatter is also put forward. The proposed discrete-time variable structure controller can effectively constrain the oscillation of allowed cell rate (ACR) and the queue length in a router. Moreover, the controller is self-adaptive against the uncertainty in the system. Simulations are done in different scenarios. The results demonstrate that the controller has better stability and robustness than the traditional binary flow controller, so it is good for adequately exerting the simplicity of binary flow control mechanisms.
文摘A decentralized variable-structure robust control technique for uncertain large-scale systems is proposed and using the proposed technique. a decentralized robust control system for uncertain flexible space station is designed. The designed robust control system can guarantee the stability and safe operation of space station in a wide range of system parameters variations and highly intensive external disturbances. In addition. because decentralized adaptation laws for the upper bounds of system uncertainties are introduced, the control technique is particularly applicable to the uncertain flexible space station with complex structure whose bounds of system uncertainties can not be determined or vary with time.
文摘The increase of satellite’s dimensions has caused flexibility and formation of uncertainty in their model. This is because of space missions being more complex and using light moving structures in satellites. Satellites are also encountered with various circumferential disturbance torques. This uncertainty in model and disturbance torques will cause undesirable performance of satellites’ attitude control system. So, for attitude control of these satellites, those methods should be used which are robust to uncertainty of the plant’s model and can reject the effects of disturbances and the measurement noise. One of these methods is the robust control design method. But, because of pole’s place of these satellite’s dynamics equations, the designing procedure of robust control will face difficulties. In this paper, by using an internal feedback as a novel idea, the satellite’s dynamics equations are changed in such a way that the poles will be placed in proper locations. Then, for these new equations, by regarding the effects of flexibility as uncertainty and considering the uncertainty in inertia matrix of satellite, an H∞ controller has been designed and for better performance, a μ-controller has been improved. Afterwards, these two controllers are analyzed and compared for the original dynamic equations, not for the modified ones. Also, for comparison, a classic controller has been also designed for the original plant and eventually all these three controllers are compared with each other.
基金Sponsored by Program for Young Excellent Talents in Harbin Institute of Technology(Grant No.HITQNJS.2007.001)National Natural Science Founda-tion of China(Grant No.60674101)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20050213010).
文摘This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The control configuration included the attitude controller based on VSOFC method and vibration attenuator designed by constant-gain negative velocity feedback control. The attitude controller consisted of a linear feedback term and a discontinuous feedback term. With the presence of this attitude controller, an additional flexible control system acting on the flexible parts can be designed for vibration control. Compared with conventional proportional-derivative (PD) control, the developed control scheme guarantees not only the stability of the closed-loop system, but also yields better performance and robustness in the presence of parametric uncertainties and externai disturbance. Simulation results are presented for the spacecraft model to show the effectiveness of the proposed control techniques.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60774062)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070213061)Young Excellent Talents in Harbin Institute of Technology (Grant No.HITQNJS.2007.001)
文摘A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control and the vibration suppression sub-systems are designed separately using the lower order model. The design of attitude controller is based on the variable structure control (VSC) theory leading to a discontinuous control law. This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system. To actively suppress the flexible vibrations, the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages. In addition, a special configuration of actuators for three-axis attitude control is also investigated: the pitch attitude controlled by a momentum wheel, and the roll/yaw control achieved by on-off thrusters, which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history. Numerical simulations performed show that the rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.
文摘In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.
文摘The synchronization problem under two cases is considered. One is that the bound on the uncertainty existing in the controller is known, the other is that the bound is unknown. In the latter case, the simple adaptation laws for upper bound on the norm of the uncertainty is proposed. Using this adaptive upper bound, a variable structure control is designed. The proposed method does not guarantee the convergence of the adaptive upper bound to the real one but makes the system asymptotically stable.
基金supported by the National Natural Science Foundation of China (No. 60850004)the Shanghai Natural Science Foundation (No.09ZR1413200)+1 种基金the Leading Academic Discipline Project of Shanghai Municipal Education Commission Foundation (No. J51303)the Foundation of Henan Educational Committee (No. 2011B120005)
文摘The variable structure controller is designed for a class of nonlinear uncertain time-delay system by using robust observer, and incorporating H-infinity control technique, the controller can guarantee the H-infinity performance of sliding mode dynamics and satisfy the reaching condition, which also does not require uncertainties to satisfy matching condition and linear boundary condition. The simulation example is given to illustrate the method.
基金Sponsored by the Natural Science Foundation of Zhejiang Province in China(Grant No. Y105141).
文摘This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunnv function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.
文摘This paper presents some recent developments in modelling and numerical analysis of piezoelectric systems and controlled smart structures based on a ?nite element formulation with embedded control. The control aims at vibration suppression of the structure subjected to external disturbances, like wind and noise, under the presence of model inaccuracies, using the available measurements and controls. A smart structure under dynamic loads is analysed and comparison between results for beam with and without control is made. The numerical results show that the control strategy is very effective and suppresses the vibrations of the structure.
文摘The nonlinear dynamic system of spacecraft with uncertainty and coupling is analyzed and its general dynamical equation is given.The decoupling-ability and controllability are proved.Aiming at this system,a new nonlinear decoupling controlling method is put forward by synthetically using the variable structure and fuzzy theory.The simulation results show that this method is effective in tracking performances under the existence of uncertainty and outer disturbance.
文摘This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.
基金the National Natural Science Foundation of China and China Postdoctoral Science Foundation.
文摘The flexible satellites with large solar panels require strong robustness of attitude control systems, so that good dynamic properties and high precision of attitude orientation and adjustment can be maintained even under the action of various uncertainties. As solar panels have been placed on some new type of our satellites, it is necessary to study the control schemes and the corresponding experiments from the viewpoint of engineering.
文摘This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.
文摘The robust control of spacecraft during approach for docking is studied by first giving the relative motion equations for trajectory and attitude coupling of two spacecraft and then accomplishing the control design of the tracking vehicle using the feedback linearization method and the variable structure theory. Both theoretical analysis and simulation results indicate the robust controller proposed can guarantee non impact docking of two spacecraft even when the object vehicle is subjected to an external interference.
文摘A variable structure based control scheme was proposed for Active Queue Management(AQM) by using sliding model algorithm and reach law method. This approach aims to address the tradeoff between good performance and robustness with respect to the uncertainties of the round-trip time and the number of active connections. Ns simulations results show that the proposed design significantly outperforms the peer AQM schemes in terms of fluctuation in the queue length, packet throughput, and loss ratio. The conclusion is that proposed scheme is in favor of the achievement to AQM objectives due to its good transient and steady performance.
基金National Natural Science Foundation of China Under Grant No. 50608012 and No.10472023The Cardiff Advanced Chinese Engineering Centre
文摘This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.
文摘Combining the characteristics of servo systems , tracking variable structure control law is studied. Two kinds of new variable control law , the generalized exponential approaching vari- able structure control law and the integral variable structure control law are put forward for dis- crete time domain. Taking pump-controlled-motor rotational speed servo system for example , the experiment investigation and digital simulation of integral variable structure control law for dis- crete time domain are performed , the rightness of conclusions are verified.