期刊文献+
共找到1,472篇文章
< 1 2 74 >
每页显示 20 50 100
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
1
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section
2
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第3期23-53,共31页
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans... Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre. 展开更多
关键词 Thin Wall Theory Cantilever beam Open Channel Section Principal Axes flexure Transverse Shear TORSION Shear Centre Shear Flow WARPING Fixed-End Constraint
下载PDF
Experimental study on ultimate flexural capacity of steel encased concrete composite beams 被引量:8
3
作者 肖辉 李爱群 杜德润 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期191-196,共6页
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c... Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data. 展开更多
关键词 steel encased concrete composite beam ultimate flexural capacity finiteelement analysis
下载PDF
Flexural behaviors of FRP strengthened corroded RC beams 被引量:1
4
作者 潘金龙 王路平 +1 位作者 袁方 黄毅芳 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期77-83,共7页
The flexural behavior of eight FRP ( fiber reinforced polymer) strengthened RC (reinforced concrete) beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influen... The flexural behavior of eight FRP ( fiber reinforced polymer) strengthened RC (reinforced concrete) beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influences of the corrosion rate on crack pattern, failure mechanism, ultimate strength, ductility and deformation capacity are also analyzed. Modeling results show that the beams with low corrosion rates fail by the crushing of the concrete in the compression zone. For the beams with medium corrosion rates, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding, and the beams finally fail by the debonding of the FRP plates. For the beams with high corrosion rates, the bond slip occurs before steel yielding, and the beams finally fail by the crushing of the concrete in the compression zone. The higher the corrosion rates of the longitudinal reinforcement, the more the carrying capacity of FRP strengthened RC beams reduces. The carrying capacity of RCB-1 (the corrosion rate is 0) is 115 kN, and the carrying capacity of RCB-7 (the corrosion rate is 20% ) is 42 kN. The deformation capacity of FRP strengthened corroded RC beams is higher than that of FRP strengthened uucorroded RC beams. The ultimate deflection of RCB-1 and RCB-7 are 20 mm and 35 nun, respectively, and the ultimate deflection of RCB-5 (the corrosion rate is 10% ) reaches 60 ilUn. 展开更多
关键词 corroded reinforced concrete beam FRP fberreinforced polymer strengthening numerical analysis flexural behavior
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
5
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites (ECC) reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
Research on Flexural Behavior of Coral Aggregate Reinforced Concrete Beams 被引量:9
6
作者 MA Hai-yan DA Bo +1 位作者 YU Hong-fa WU Zhang-yu 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期593-604,共12页
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an... Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed. 展开更多
关键词 coral aggregate reinforced concrete beam flexural behavior steel corrosion reinforcement ratio concrete strength calculation model
下载PDF
NONLINEAR FLEXURAL WAVES IN LARGE-DEFLECTION BEAMS 被引量:8
7
作者 Shanyuan Zhang Zhifang Liu Guoyun Lu 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期287-294,共8页
The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account t... The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained. 展开更多
关键词 large-deflection beam nonlinear flexural wave Jacobi elliptic function expansion
下载PDF
Flexural behavior of reinforced concrete beams with high performance fiber reinforced cementitious composites 被引量:5
8
作者 SIVA Chidambaram R PANKAJ Agarwal 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2609-2622,共14页
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t... This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique. 展开更多
关键词 reinforced concrete beams fiber reinforced composites flexural behavior flexural damage ratio
下载PDF
Flexural response of reinforced concrete beams strengthened with post-poured ultra high toughness cementitious composites layer 被引量:6
9
作者 王楠 徐世烺 《Journal of Central South University》 SCIE EI CAS 2011年第3期932-939,共8页
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT... Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation. 展开更多
关键词 ultra high toughness cementitious composities strengthening beams flexural behavior post-poured layer
下载PDF
Influence of steel corrosion to flexural behavior of coral aggregate concrete beam 被引量:7
10
作者 DA Bo YU Hong-fa +1 位作者 MA Hai-yan WU Zhang-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第5期1530-1542,共13页
To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the ... To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established. 展开更多
关键词 coral aggregate concrete beam steel corrosion flexural behavior bearing capacity calculation model
下载PDF
Flexural behavior of steel reinforced engineered cementitious composite beams 被引量:4
11
作者 Dong Bingqing Pan Jinlong Lu Cong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期72-82,共11页
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica... In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams. 展开更多
关键词 engineered cementitious composite(ECC) steel reinforced ECC(SRECC) composite beam flexural behavior ultimate load-carrying capacity
下载PDF
Flexural Property of String Beam of Pre-Stressed Glulam Based on Influence of Regulation and Control 被引量:2
12
作者 Nan Guo Wenbo Wang Hongliang Zuo 《Structural Durability & Health Monitoring》 EI 2019年第2期143-179,共37页
Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined... Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined members,materials of high strength can’t be fully utilized.Therefore,this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam.By regulating and controlling the pre-stress,a part of the load borne by the wood is allocated to the pre-stressed tendon,which is equivalent to completing a redistribution of internal force,thus realizing the repeated utilization of the wood strength and the full utilization of the strength of the high-strength pre-stressed tendon.The bending experiments of 10 beams under 5 working conditions are carried out.The failure mode,bearing capacity and deformation of the beams are analyzed.The results show that 90%of beams are deformed under compression.The ultimate load of the regulated and controlled beam is obviously larger than that of the unregulated beam,and the ultimate load of the beam increases with the increase of the degree of regulation and control.Compared with that of the unregulated beams,the ultimate load of beams regulated by 7.5%-30%increases by 25.42%-65.08%,and the regulated and controlled effect is obvious.With the increase of the regulation and control amplitude of pre-stress,the stiffness of string beam of pre-stressed glulam increases.In addition,with the increase of the regulation and control amplitude,the compression height of the beam increases before the failure,and it reaches the state of full-section compression at the time of failure,giving full play to the compressive property of the glulam.At the end of the experiment,the constitutive relation which can reflect the anisotropy of the wood is established combined with the experimental data.The finite element analysis of the beam under 7 working conditions is carried out by using ABAQUS finite element program,and the influence of the regulation and control amplitude on the stress distribution and ultimate bearing capacity of the beam is discussed. 展开更多
关键词 STRING beam of GLULAM flexural PROPERTY experimental study PRE-STRESS REGULATION and control
下载PDF
Characterization of the Flexural Behavior of Bamboo Beams 被引量:1
13
作者 Limin Tian Jianpeng Wei +1 位作者 Jiping Hao Qiushuo Wang 《Journal of Renewable Materials》 SCIE EI 2021年第9期1571-1597,共27页
Bamboo is a renewable and environmentally friendly material often used for construction.This study investigates the flexural behavior of bamboo beams through theoretical and finite element(FE)analyses.Considering the ... Bamboo is a renewable and environmentally friendly material often used for construction.This study investigates the flexural behavior of bamboo beams through theoretical and finite element(FE)analyses.Considering the material’s nonlinearity,a method of calculating load-deflection curves is proposed and validated via FE analysis.The interfacial slippage dominated by the shear stiffness of the interface between two bamboo poles significantly influences the flexural behavior of double-pole bamboo beams.Thus,the load-deflection curves for different shear stiffnesses can be obtained via theoretical and FE analyses.Subsequently,a novel configuration using diagonal steel bands to avoid slippage is presented.An inclination angle of 45°is suggested to adequately develop the stiffness and bearing capacity of the steel band. 展开更多
关键词 Bamboo beam flexural behavior interfacial slippage steel band FE analysis
下载PDF
Modeling the Flexural Carrying Capacity of Corroded RC Beam 被引量:1
14
作者 王小惠 刘西拉 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第2期129-135,共7页
Considering the change of bond strength between corroded steel and concrete,flexural carrying ca- pacity of corroded reinforced concrete (RC) beam was calculated.On the basis of the condition of equilibrium of forces ... Considering the change of bond strength between corroded steel and concrete,flexural carrying ca- pacity of corroded reinforced concrete (RC) beam was calculated.On the basis of the condition of equilibrium of forces and compatibility of deformations for the whole beam,a model for the prediction of flexural carrying capacity of the corroded RC beam was proposed.Comparison of the model's predictions with the experimental results published in the literature shows the practicality of the proposed method. 展开更多
关键词 bond strength flexural capacity mechanical behavior corroded reinforced concrete beam
下载PDF
Influence of the column-to-beam flexural strength ratio on the failure mode of beam-column connections in RC frames 被引量:1
15
作者 Gong Maosheng Zuo Zhanxuan +2 位作者 Sun Jing He Riteng Zhao Yinan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期441-452,共12页
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ... The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes. 展开更多
关键词 strong column-weak beam column-to-beam flexural strength ratio reinforced concrete frame structure beam-column connection failure mode
下载PDF
Damage detection method in complicated beams with varying flexural stiffness
16
作者 冯侃 励争 +1 位作者 高桂云 苏先樾 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期469-478,共10页
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying... A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications. 展开更多
关键词 nondestructive testing modal strain energy varying flexural stiffness beam fiber reinforced composite material wind turbine blade
下载PDF
Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates
17
作者 牛鹏志 《Journal of Chongqing University》 CAS 2007年第1期67-72,共6页
Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper prese... Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural ngidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from .5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue "cycles to the fatigue life is within 0.0.5 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments. 展开更多
关键词 flexural rigidity carbon fiber laminate reinforced concrete beam FATIGUE
下载PDF
Prediction of Flexural Deformation of Reinforcement Concrete Beams with Polynomial Tension Stiffening Model
18
作者 杨淑雁 刘西拉 冷予冰 《Journal of Donghua University(English Edition)》 EI CAS 2013年第2期83-89,共7页
Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member wa... Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member was proposed. The post-cracking behavior as well as tension stiffening effect was considered in the new model. The relative slip of bending member could also be determined through the extension of the new model,which could be applied to obtaining the concentrated rotations at certain sections in order to predict the flexural deformation of RC beam. Several examples of four-point bending RC beams were approached to verify the new model,and the predictions of the flexural deflections of RC beams agreed well with experimental results. The new model can be extended to the application of partially corroded RC beam. 展开更多
关键词 tension stiffening polynomial function reinforced concrete(RC) beam flexural deformation
下载PDF
Investigating Some Parameters Affecting Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Laminate
19
作者 Azad A.Mohammed 《Journal of World Architecture》 2018年第5期1-6,共6页
In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For t... In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For this purpose,six reinforced concrete beams were cast and tested in the laboratory.Based on the obtained data,when CFRP laminate is applied to the tension face,too close to the steel rebar,the flexural strength of the strengthened beam is reduced.In general,the performance of the beam strengthened with one wide CFRP strip is better than that strengthened with two equivalent narrow strips.Ultimate load capacity of each strengthened beam was calculated based on the method given by the ACI 440.2R and compared with the test one.It is concluded that,to avoid the steel rebar-CFRP laminate interaction effect,the CFRP laminate depth-to-the effective depth ratio(df/d)should not be smaller than about 1.17. 展开更多
关键词 carbon fiber REINFORCED polymer concrete beam flexure strengthening
下载PDF
Coupled flexural-torsional vibration band gap in periodic beam including warping effect
20
作者 方剑宇 郁殿龙 +1 位作者 韩小云 蔡力 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1316-1321,共6页
The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory. The band structures of the periodic beam, both including warping e... The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory. The band structures of the periodic beam, both including warping effect and ignoring warping effect, are obtained. The frequency response function of the finite periodic beams is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored. The result including warping effect agrees quite well with the simulated result. 展开更多
关键词 phononic crystals coupled flexural-torsional beam transfer matrix method warpingstiffness
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部