期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Damage detection method in complicated beams with varying flexural stiffness
1
作者 冯侃 励争 +1 位作者 高桂云 苏先樾 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期469-478,共10页
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying... A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications. 展开更多
关键词 nondestructive testing modal strain energy varying flexural stiffness beam fiber reinforced composite material wind turbine blade
下载PDF
Finite Element Calculation of the Flexural Stiffness of Corroded RC Eccentric Compressive Members
2
作者 张华 卫军 +1 位作者 潘硚 黄滢 《Journal of Southwest Jiaotong University(English Edition)》 2010年第4期303-308,共6页
A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a co... A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a corroded steel bar,as well as the deterioration of bond character between corroded reinforcement and concrete. The reliability of the finite element model was evaluated by comparing the results of the finite element calculation with the data from experiments. Based on the finite element analysis results,the influence of corrosion degree,the diameter change of the longitudinal reinforcing bars and the spacing change of stirrups on the flexural stiffness were calculated and analyzed. 展开更多
关键词 Reinforced concrete eccentric compressive members flexural stiffness Finite element method Corrosion degree Diameter of longitudinal reinforcing bars Stirrup spacing
下载PDF
Flexural stiffness characterization of the corrugated steel-concrete composite structure for tunnel projects
3
作者 Wenqi Ding Xuanbo Huang +2 位作者 Shuobiao Li Wentong Liu Qingzhao Zhang 《Underground Space》 SCIE EI CSCD 2023年第5期18-30,共13页
Corrugated steel–concrete(CSC)composite structures are increasingly used in tunnel and culvert projects due to their good mechanical properties.The design of CSC composite structures is often governed by deflection l... Corrugated steel–concrete(CSC)composite structures are increasingly used in tunnel and culvert projects due to their good mechanical properties.The design of CSC composite structures is often governed by deflection limits in service,hence it becomes crucial to evaluate accurately their flexural stiffness.In this work,the deflection deformation mechanism of CSC composite structure is studied by experimental and numerical methods,and a simplified formula for calculating the flexural stiffness is established.In addition,the deflection results obtained by different methods are compared and analyzed.It is found that:(1)the flexural stiffness of the CSC composite structure is constant only when the load is small,and after the bending moment exceeds a certain value,the flexural stiffness will gradually become smaller as the bending moment increases.(2)The value of the bending moment corresponding to the end of the elastic stage of the bending moment-deflection curve increases with the increase of the axial force in the composite structure.(3)As the axial force of the composite structure increases,the flexural bearing capacity of the structure increases first and then decreases. 展开更多
关键词 Tunnel and culvert Corrugated steel-concrete composite structure Bending moment flexural stiffness
原文传递
Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms 被引量:6
4
作者 WANG Nianfeng LIANG Xiaohe ZHANG Xianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期776-784,共9页
Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtain... Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion. 展开更多
关键词 corrugated flexure beam stiffness analysis compliant mechanisms
下载PDF
Modeling the Impact of Testing Mode on the Viscoelastic Behavior of Asphalt Concrete
5
作者 Saad Issa Sarsam 《Journal of Smart Buildings and Construction Technology》 2023年第1期16-23,共8页
The variations in the viscoelastic characteristics of asphalt concrete due to testing mode are assessed and modeled in the present investigation.Asphalt concrete mixture was prepared at its optimum asphalt binder requ... The variations in the viscoelastic characteristics of asphalt concrete due to testing mode are assessed and modeled in the present investigation.Asphalt concrete mixture was prepared at its optimum asphalt binder requirement and compacted in slab mold with the aid of roller compaction.Beam specimens of 6.2 cm width,5.6 cm depth,and 40 cm length,were obtained from the slab samples with the aid of a diamond saw,and tested using controlled stress and strain techniques under dynamic flexural stresses.The viscoelastic properties such as the phase angle,cumulative dissipated energy,permanent deformation,flexural stiffness,and micro strain were monitored and modeled among the two testing techniques.It was noticed that higher micro strain and permanent deformation are detected when testing the asphalt concrete specimens under constant strain mode.However,higher phase angle,flexural stiffness,and energy dissipation could be observed under the constant stress mode of the test. 展开更多
关键词 Stress Asphalt concrete Constant strain Phase angle Cumulative dissipated energy flexural stiffness DEFORMATION
下载PDF
Estimation of the Fatigue Endurance Limit of HMAC for Perpetual Pavements
6
作者 李宁 AAA Molenaar MFC van de Ven 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期645-649,共5页
A simplified procedure was described to estimate the FEL of three kinds of hot-mix asphalt concrete (HMAC) without doing any fatigue tests. The procedure required two fundamental properties of HMAC, tensile strength... A simplified procedure was described to estimate the FEL of three kinds of hot-mix asphalt concrete (HMAC) without doing any fatigue tests. The procedure required two fundamental properties of HMAC, tensile strength under different temperatures and strain rates, and flexural stiffness under different stain levels. This information can reliably be obtained in simple tests, which are the monotonic uniaxial tensile test (MUTT) and the four-point bending test (FPBT). A new parameter, the initial stress ratio Rinitial, was introduced to connect these two tests, which was defined as the ratio of applied initial stress and tensile strength of the specimen. At last the FEL can be expressed as a function of the initial flexural stiffness, frequency and temperature. Obviously, this procedure has the potential to be very useful in view of long-life pavement design and time consuming traditional fatigue tests. 展开更多
关键词 fatigue endurance limit hot-mix asphalt concrete tensile strength flexural stiffness initial stress ratio
下载PDF
LOADS INFLUENCE ANALYSIS ON NOVEL HIGH PRECISION FLEXURE PARALLEL POSITIONER 被引量:1
7
作者 SUN Lining DONG Wei DU Zhijiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期37-40,共4页
A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventiona... A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system. 展开更多
关键词 Flexure hinge Parallel positioner stiffness analysis Finite element analysis (FEA)
下载PDF
Structural Characteristics of Allomyrina Dichotoma Beetle's Hind Wings for Flapping Wing Micro Air Vehicle 被引量:3
8
作者 Ngoc San Ha Quang Tri Truong Hoang Vu Phan Nam Seo Goo Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第2期226-235,共10页
In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine... In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine its overall flexural stiffness. Dy- namic characteristics such as natural frequency, mode shape, and damping ratio of vibration modes in the operating frequency range were determined using a Bruel & Kjaer fast Fourier transform analyzer along with a laser sensor. The static and dynamic characteristics of natural Allomyrina dichotoma beetle's hind wings were compared to those of a fabricated artificial wing. The results indicate that natural frequencies of the natural wing were significantly correlated to the wing surface area density that was defined as the wing mass divided by the hind wing surface area. Moreover, the bending behaviors of the natural wing and artificial wing were similar to that of a cantilever beam. Furthermore, the flexural stiffness of the artificial wing was a little higher than that of the natural one whereas the natural frequency of the natural wing was close to that of the artificial wing. These results provide important information for the biomimetic design of insect-scale artificial wings, with which highly ma- neuverable and efficient micro air vehicles can be designed. 展开更多
关键词 beetle hind wing flexural stiffness natural frequency mode shape Micro Air Vehicles (MAVs)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部