To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)...To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.展开更多
High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M...High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.展开更多
By using high-alumina fly ash as raw material,a process was proposed for activating the fly ash with Na_(2)CO_(3)calcination and extracting aluminum from activated clinker with sulfuric acid leaching.The feasibility o...By using high-alumina fly ash as raw material,a process was proposed for activating the fly ash with Na_(2)CO_(3)calcination and extracting aluminum from activated clinker with sulfuric acid leaching.The feasibility of roasting process of activated fly ash by Na_(2)CO_(3)was discussed based on thermodynamic analysis.The experimental results showed that Na_(2)CO_(3)gradually reactes with mullite over 700 K to produce NaAlSiO_(4).The optimal process conditions for the activation stage are:a material ratio of 1:1 between sodium carbonate and fly ash,a calcination temperature of 900℃,and a calcination time of 2.5 hours.Under these conditions,the leaching rate of aluminum is 90.3%.By comparing the SEM and XRD analysis of raw and clinker materials,it could be concluded that the mullite phase of fly ash is almost completely destroyed and transformed into sodium aluminosilicate with good acid solubility.展开更多
This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP re...This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.展开更多
High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina con...High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.展开更多
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ...This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.展开更多
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen...Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively.展开更多
Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthe...Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthesized barley ch1 and chi2 genes in cotton(Gossypium hirsutum)through Agrobacterium-mediated transformation.Fifty-five putative transgenic cotton plants were obtained,out of which fifteen plants successfully survived and were shifted to the field.Using gene-specific primers,amplification of 447 bp and 401 bp fragments confirmed the presence of the ch1 and chi2 genes in five transgenic cotton plants of the T0 generation.These five plants were further evalu-ated for their mRNA expression levels.The T0 transgenic cotton plants with the highest mRNA expression level and better yield performance in field,were selected to raise their subsequent progenies.Results The T1 cotton plants showed the highest mRNA expression levels of 3.5-fold in P10(2)for the ch1 gene and 3.7-fold in P2(1)for the chi2 gene.Fluorescent in situ hybridization(FISH)confirmed a single copy number of ch1 and chi2(hemizygous)on chromosome no.6.Furthermore,the efficacy of transgenes on whitefly was evaluated through an insect bioassay,where after 96 h of infestation,mortality rates of whitefly were calculated to be 78%–80%in transgenic cotton plants.The number of eggs on transgenic cotton plants were calculated to be 0.1%–0.12 per plant compared with the non-transgenic plants where egg number was calculated to be 0.90–1.00 per plant.Conclusion Based on these findings,it can be concluded that the chemically synthesized barley chitinase genes(ch1 and chi2)have the potential to be effective against insects with chitin exoskeletons,including whiteflies.The transgenic cotton plants expressing these genes showed increased resistance to whiteflies,resulting in reduced egg numbers and higher mortality rates.展开更多
The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coa...The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.展开更多
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen...Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.展开更多
CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbon...CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.展开更多
Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventio...Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering.展开更多
In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a par...In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints.展开更多
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in...The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.展开更多
Elaphropeza is distributed worldwide with over 220 known species,of which 61 species were known to occur in China.Two species of Elaphropeza are reported from Chongqing for the first time.One species,Elaphropeza chong...Elaphropeza is distributed worldwide with over 220 known species,of which 61 species were known to occur in China.Two species of Elaphropeza are reported from Chongqing for the first time.One species,Elaphropeza chongqingana sp.nov.,is described as new to science.A key to the species of Elaphropeza from Chongqing is presented.展开更多
The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
BACKGROUND Coronary artery diseases can cause myocardial ischemia and hypoxia,angina pectoris,myocardial infarction,arrhythmia,and even sudden death led to inflight incapacitation of aircrew.As the main cause of groun...BACKGROUND Coronary artery diseases can cause myocardial ischemia and hypoxia,angina pectoris,myocardial infarction,arrhythmia,and even sudden death led to inflight incapacitation of aircrew.As the main cause of grounding due to illness,they severe threats to the health and fighting strength of military aircrew.Early warning in an early and accurate manner and early intervention of diseases possibly resulting in inflight incapacitation are key emphases of aeromedical support in clinic.AIM To figure out the flight factors and clinical characteristics of military aircrew with abnormal results of coronary artery computed tomographic angiography(CTA),thereby rendering theoretical references for clinical aeromedical support of military flying personnel.METHODS The clinical data of 15 flying personnel who received physical examinations in a military medical center from December 2020 to June 2023 and were diagnosed with coronary artery diseases by coronary artery CTA were collected and retrospectively analyzed,and a descriptive statistical analysis was conducted on their onset age,aircraft type and clinical data.RESULTS The 15 military flying personnel diagnosed with coronary artery diseases by coronary artery CTA were composed of 9 pilots,1 navigator and 5 air combat service workers.Multi-vessel disease was detected in 9 flying personnel,among which 8(88.9%)were pilots.Flying personnel with multi-vessel disease had higher content of cholesterol,low-density lipoprotein cholesterol and apolipoprotein B than those with single-vessel disease.CONCLUSION Coronary artery diseases are the major heart disease for the grounding of flying personnel due to illness,which can lead to inflight incapacitation.Coronary artery CTA is conducive to early detection and early intervention treatment of such diseases in clinic.展开更多
基金Funded by the National Natural Science Foundation of China(No.52378213)the Technology Development Project(No.20201902977180010) of CABR Technology Co.,Ltd。
文摘To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete.
基金supported by the key program of the National Natural Science Foundation of China(52236008).
文摘High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.
基金Funded by the National Natural Science Foundation of China(No.U1710257)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0656)+2 种基金the Doctoral Research Foundation of Taiyuan University of Science and Technology,China(No.20142001)the Open Foundation Program of Key Laboratory for Ecological Metallurgy of Multimetallic Mineral,Ministry of Education,China(No.2020003)the Supported by Fundamental Research Program of Shanxi Province,China(No.202103021224281)。
文摘By using high-alumina fly ash as raw material,a process was proposed for activating the fly ash with Na_(2)CO_(3)calcination and extracting aluminum from activated clinker with sulfuric acid leaching.The feasibility of roasting process of activated fly ash by Na_(2)CO_(3)was discussed based on thermodynamic analysis.The experimental results showed that Na_(2)CO_(3)gradually reactes with mullite over 700 K to produce NaAlSiO_(4).The optimal process conditions for the activation stage are:a material ratio of 1:1 between sodium carbonate and fly ash,a calcination temperature of 900℃,and a calcination time of 2.5 hours.Under these conditions,the leaching rate of aluminum is 90.3%.By comparing the SEM and XRD analysis of raw and clinker materials,it could be concluded that the mullite phase of fly ash is almost completely destroyed and transformed into sodium aluminosilicate with good acid solubility.
基金Funded by the National Natural Science Foundation of China(No.52008046)Young Elite Scientists Sponsorship Program from JSAST(No.TJ-2023-024)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2848)。
文摘This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.
基金supported by the National Natural Science Foundation of China(52174277,52204309 and 52374300).
文摘High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.
基金the financial supports provided by the National Natural Science Foundation of China(U2040222,52293431,and 52278259)。
文摘This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.
文摘Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively.
文摘Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthesized barley ch1 and chi2 genes in cotton(Gossypium hirsutum)through Agrobacterium-mediated transformation.Fifty-five putative transgenic cotton plants were obtained,out of which fifteen plants successfully survived and were shifted to the field.Using gene-specific primers,amplification of 447 bp and 401 bp fragments confirmed the presence of the ch1 and chi2 genes in five transgenic cotton plants of the T0 generation.These five plants were further evalu-ated for their mRNA expression levels.The T0 transgenic cotton plants with the highest mRNA expression level and better yield performance in field,were selected to raise their subsequent progenies.Results The T1 cotton plants showed the highest mRNA expression levels of 3.5-fold in P10(2)for the ch1 gene and 3.7-fold in P2(1)for the chi2 gene.Fluorescent in situ hybridization(FISH)confirmed a single copy number of ch1 and chi2(hemizygous)on chromosome no.6.Furthermore,the efficacy of transgenes on whitefly was evaluated through an insect bioassay,where after 96 h of infestation,mortality rates of whitefly were calculated to be 78%–80%in transgenic cotton plants.The number of eggs on transgenic cotton plants were calculated to be 0.1%–0.12 per plant compared with the non-transgenic plants where egg number was calculated to be 0.90–1.00 per plant.Conclusion Based on these findings,it can be concluded that the chemically synthesized barley chitinase genes(ch1 and chi2)have the potential to be effective against insects with chitin exoskeletons,including whiteflies.The transgenic cotton plants expressing these genes showed increased resistance to whiteflies,resulting in reduced egg numbers and higher mortality rates.
基金supported by Major science and technology projects of Gansu Province(22ZD6GA008,22ZD6GA014)National Natural Science Foundation of China(52304368,52164034)+2 种基金Science and Technology Project of Gansu Province(Postdoctoral project at the station)(23JRRA781,23JRRA812)Science and Technology Project of Gansu Province(Special Project of Science and Technology Specialist)(23CXGA0068)The Tamarisk Outstanding Young Talents Program of Lanzhou University of Technology.The 74th batch of China Postdoctoral Science Foundation(Regional Special Support Program)(2023MD744218).
文摘The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.
基金financially supported by the Special Research Assistant Fund Project of Chinese Academy of Sciences.
文摘Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.
基金National Natural Science Foundation of China(21706172)Shanxi Province Natural Science Foundation(202203021221069 and 20210302123167).
文摘CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2023R809).
文摘Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering.
文摘In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints.
基金support from the Ningxia Natural Science Foundation Project(2023AAC03361).
文摘The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.
基金supported by the National Natural Science Foundation of China(31970444)。
文摘Elaphropeza is distributed worldwide with over 220 known species,of which 61 species were known to occur in China.Two species of Elaphropeza are reported from Chongqing for the first time.One species,Elaphropeza chongqingana sp.nov.,is described as new to science.A key to the species of Elaphropeza from Chongqing is presented.
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
基金Supported by Enhancement Foundation Program of Naval Medical Center of Naval Medical University.
文摘BACKGROUND Coronary artery diseases can cause myocardial ischemia and hypoxia,angina pectoris,myocardial infarction,arrhythmia,and even sudden death led to inflight incapacitation of aircrew.As the main cause of grounding due to illness,they severe threats to the health and fighting strength of military aircrew.Early warning in an early and accurate manner and early intervention of diseases possibly resulting in inflight incapacitation are key emphases of aeromedical support in clinic.AIM To figure out the flight factors and clinical characteristics of military aircrew with abnormal results of coronary artery computed tomographic angiography(CTA),thereby rendering theoretical references for clinical aeromedical support of military flying personnel.METHODS The clinical data of 15 flying personnel who received physical examinations in a military medical center from December 2020 to June 2023 and were diagnosed with coronary artery diseases by coronary artery CTA were collected and retrospectively analyzed,and a descriptive statistical analysis was conducted on their onset age,aircraft type and clinical data.RESULTS The 15 military flying personnel diagnosed with coronary artery diseases by coronary artery CTA were composed of 9 pilots,1 navigator and 5 air combat service workers.Multi-vessel disease was detected in 9 flying personnel,among which 8(88.9%)were pilots.Flying personnel with multi-vessel disease had higher content of cholesterol,low-density lipoprotein cholesterol and apolipoprotein B than those with single-vessel disease.CONCLUSION Coronary artery diseases are the major heart disease for the grounding of flying personnel due to illness,which can lead to inflight incapacitation.Coronary artery CTA is conducive to early detection and early intervention treatment of such diseases in clinic.