光伏发电阵列板在局部遮阴下会产生多个功率峰值,传统算法难以准确快速追踪光伏最大功率点(maximum power point,MPP),该文提出一种基于莱维飞行灰狼算法(Levy grey wolf optimization,LGWO)与电导增量法(incremental conductance,INC)...光伏发电阵列板在局部遮阴下会产生多个功率峰值,传统算法难以准确快速追踪光伏最大功率点(maximum power point,MPP),该文提出一种基于莱维飞行灰狼算法(Levy grey wolf optimization,LGWO)与电导增量法(incremental conductance,INC)结合的复合算法追寻MPP,莱维飞行帮助灰狼算法跳出局部最优,搜寻MPP附近时,切换电导增量算法减少系统振荡,在静态与动态局部遮阴下通过Simulink进行光伏并网仿真验证。研究结果显示,所提复合算法收敛效果快速精确,并且符合并网谐波(total harmonic distortion,THD)含量要求,可保证系统的稳定运行。展开更多
针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提...针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。展开更多
为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现...为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果.展开更多
文摘光伏发电阵列板在局部遮阴下会产生多个功率峰值,传统算法难以准确快速追踪光伏最大功率点(maximum power point,MPP),该文提出一种基于莱维飞行灰狼算法(Levy grey wolf optimization,LGWO)与电导增量法(incremental conductance,INC)结合的复合算法追寻MPP,莱维飞行帮助灰狼算法跳出局部最优,搜寻MPP附近时,切换电导增量算法减少系统振荡,在静态与动态局部遮阴下通过Simulink进行光伏并网仿真验证。研究结果显示,所提复合算法收敛效果快速精确,并且符合并网谐波(total harmonic distortion,THD)含量要求,可保证系统的稳定运行。
文摘针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。
文摘为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果.