In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines r...In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field.展开更多
Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w...Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance.展开更多
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de...With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area.展开更多
The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum simulation for QFP devices is also researched. The results indicate that when t...The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum simulation for QFP devices is also researched. The results indicate that when the lead pitches are the same, the maximum equivalent stress of the soldered joints increases with the increasing of lead widths, while the reliability of the soldered joints reduces. When the lead widths are the same, the maximum equivalent stress of the soldered joints doesn't decrease completely with the increasing of lead pitches, a minimum value of the maximum equivalent stress values exists in all the curves. Under this condition the maximum equivalent stress of the soldewed joints is relatively the least, the reliability of soldered joints is high and the assembly is excellent. The simulating results indicate the best parameter: The lead width is 0.2 mm and lead pitch is 0.3 mm (the distance between two leads is 0.1 mm), which are benefited for the micromation of QFP devices now. The minimum value of the maximum equivalent stress of soldered joints exists while lead width is 0.25 mm and lead pitch is 0.35 mm (the distance between two leads is 0.1 mm), the devices can serve for a long time and the reliability is the highest, the assembly is excellent. The simulating results also indicate the fact that the lead width is 0.15 mm and lead pitch is 0.2 mm maybe the limit of QFP, which is significant for the high lead count and micromation of assembly.展开更多
Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not onl...Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not only with Sn-Pb eutectic solders but also with infrared reflow soldering method. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed laser soldering time, an optimal power exists, while the optimal mechanical properties of QFP micro-joints are gained. Mechanical properties of QFP micro-joints soldered with laser soldering system are better than those of QFP micro-joints soldered with IR reflow soldering method. Fracture morphologies of QFP micro-joints soldered with laser soldering system exhibit the characteristic of tough fracture, and homogeneous and fine dimples appear under the optimal laser output power.展开更多
Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys...Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.展开更多
To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were iden...To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.展开更多
The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated th...The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated that the corrosion rate of Sn-0.75Cu solder was lower than that of Sn-0.75Cu/Cu joint.The morphology observation and phase composition analysis on the corroded product at each interesting potential suggested that Sn3O(OH)2Cl2 formed on the surface of Sn-0.75Cu solder at active dissolution stage.As the potential increased from active/passive transition stage,all the surface of Sn-0.75Cu solder was covered by the Sn3O(OH)2Cl2 and some pits appeared after the polarization test.Compared to the Sn-0.75Cu solder alloy,much more Sn3O(OH)2Cl2 formed at active dissolution stage and the pits with bigger size were observed after polarization test for the Sn-0.75Cu/Cu solder joints.The leaching test confirmed that the faster electrochemical corrosion rate resulted in the larger amount of Sn released from the Sn-0.75Cu/Cu solder joints.展开更多
In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is f...In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.展开更多
The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned ab...The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.展开更多
The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (S...The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.展开更多
In this paper,the phenomena of Mg_(2)Sn-induced Sn whisker growth were explored on the surfaces of Mg/Sn/Mg ultrasonic-assisted soldering joints after aging treatment.The in-situ observation and thermal analysis confi...In this paper,the phenomena of Mg_(2)Sn-induced Sn whisker growth were explored on the surfaces of Mg/Sn/Mg ultrasonic-assisted soldering joints after aging treatment.The in-situ observation and thermal analysis confirmed that the formation and the corrosion of Mg_(2)Sn nanoparticles were the dominant reason of Sn whisker growth.The Mg_(2)Sn accumulation at the grain boundaries would pin the dislocation slip and affect the continuity of whisker growth,and the boundary angle would thus play a decisive role in the growth shape of Sn whiskers due to the pining effect of Mg_(2)Sn.This study might be conducive to elucidating the growth behavior of Sn whiskers and provide the exploration strategy to further improve the bonding strength of Mg/Sn/Mg ultrasonic-assisted soldering joints.展开更多
The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering t...The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.展开更多
The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To inve...The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To investigate the element diffusion and the growth kinetics of intermetallics formation in solder joint, isothermal aging test was performed at temperatures of 100, 150, and 190℃, respectively. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe microstructure evolution of solder joint and to estimate the thickness and the grain size of the intermetallic layers. The IMC phases were identified by energy dispersive X-ray (EDX) and X-ray diffractometer (XRD). The results clearly show that adding about 1.0% Bi in Sn-Ag-Cu solder alloy system can refine the grain size of the IMC and inhibit the excessive IMC growth in solder joints, and therefore improve the reliability of the Pb-free solder joints. Through observation of the microstructural evolution of the solder joints, the mechanism of inhibition of IMC growth due to Bi addition was proposed.展开更多
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of...Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.展开更多
Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The s...Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size, substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77 dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments.展开更多
To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. R...To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. Results indicated that little IMC formed at the interface of solder and pad with 0. 1 μm thickness of Au. Even in condition of 744 hours aging, thickness of lMCs did not increase obviously. As for the joints with 0. 5 μm thickness of Au, most of AuSn4 IMCs stayed at the inteornce and were in needle-like or dendritic morphology. With the increase of aging time, AuSn4 IMCs beeame flat and changed to a continuous layer. In the joints with 4. 0 μm thickness of Au on pads, AuSn, AuSn2, AuSn4 IMCs and Au2Sn phase formed at the interface. As aging time was increased, more Sn rich IMCs formed at the interface, and evolved to AuSn4 IMCs in condition of long time aging. Thickness of AuSn4 IMCs reached about 30μm.展开更多
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au fi...The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.展开更多
The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. ...The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.展开更多
Hillock Sn whiskers in Sn0.3Ag0.7Cu solder are investigated in 20 seconds in corrosive climate(95% methanol and 5% nitric acid),and the growth mechanism of hillock Sn whiskers is studied.The results indicate that hill...Hillock Sn whiskers in Sn0.3Ag0.7Cu solder are investigated in 20 seconds in corrosive climate(95% methanol and 5% nitric acid),and the growth mechanism of hillock Sn whiskers is studied.The results indicate that hillock Sn whiskers are formed near the interface of Sn0.3Ag0.7Cu/Cu solder joints,and small corrosion pits provide conceive sites for Sn whiskers. Moreover,compressive stress induced by IMC reaction and oxidation for the whisker growth may be suggested as the driving force.展开更多
基金fully supported by a Tabung Amanah Pusat Pengurusan Penyelidikan dan Inovasi (PPPI) grant (UPNM/2023/GPPP/SG/1)Universiti Pertahanan Nasional Malaysia (UPNM) for funding this study。
文摘In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field.
基金fully supported by a Tabung Amanah Pusat Pengurusan Penyelidikan&Inovasi(PPPI)(Grant No.PS060-UPNM/2023/GPPP/SG/1)Universiti Pertahanan Nasional Malaysia(UPNM)for funding this study。
文摘Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance.
基金supported in part by the National Key Research Project of China under Grant No.2023YFA1009402General Science and Technology Plan Items in Zhejiang Province ZJKJT-2023-02.
文摘With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area.
基金This project is supported by Provincial Six Kind Skilled Personnel Project of Jiangsu,China(No.06-E-020).
文摘The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum simulation for QFP devices is also researched. The results indicate that when the lead pitches are the same, the maximum equivalent stress of the soldered joints increases with the increasing of lead widths, while the reliability of the soldered joints reduces. When the lead widths are the same, the maximum equivalent stress of the soldered joints doesn't decrease completely with the increasing of lead pitches, a minimum value of the maximum equivalent stress values exists in all the curves. Under this condition the maximum equivalent stress of the soldewed joints is relatively the least, the reliability of soldered joints is high and the assembly is excellent. The simulating results indicate the best parameter: The lead width is 0.2 mm and lead pitch is 0.3 mm (the distance between two leads is 0.1 mm), which are benefited for the micromation of QFP devices now. The minimum value of the maximum equivalent stress of soldered joints exists while lead width is 0.25 mm and lead pitch is 0.35 mm (the distance between two leads is 0.1 mm), the devices can serve for a long time and the reliability is the highest, the assembly is excellent. The simulating results also indicate the fact that the lead width is 0.15 mm and lead pitch is 0.2 mm maybe the limit of QFP, which is significant for the high lead count and micromation of assembly.
基金Project(CX07B_087z) supported by Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan, ChinaProject(06-E-020) supported by the Six Kind Skilled Personnel Project of Jiangsu Province, China
文摘Soldering experiments of quad flat package(QFP) devices were carried out by means of diode laser soldering system with Sn-Ag-Cu and Sn-Cu-Ni lead-free solders, and competitive experiments were also carried out not only with Sn-Pb eutectic solders but also with infrared reflow soldering method. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed laser soldering time, an optimal power exists, while the optimal mechanical properties of QFP micro-joints are gained. Mechanical properties of QFP micro-joints soldered with laser soldering system are better than those of QFP micro-joints soldered with IR reflow soldering method. Fracture morphologies of QFP micro-joints soldered with laser soldering system exhibit the characteristic of tough fracture, and homogeneous and fine dimples appear under the optimal laser output power.
文摘Creep property of solder alloys is one of the important factors to affect the reliabdity of soldered joints in SMT (surface mount technology). Particle-enhancement is a way to improve the properties of solder alloys and has caused much more attention than before. Temperatures applied to soldered joints are one of the primary factors of affecting creep properties of particle enhancement composite soldered joints. In this paper single shear lap creep specimens with a 1 mm^2 cross-sectional area were fabricated using Cu particle enhancement 63Sn37 Pb based composite soldered joints and 63Sn37 Pb eutectic soldered joints to examine the influence of temperature on creep behavior of soldered joints. Results indicated that the creep resistance of soldered joints of Cu particle enhancement 63Sn37Pb based composite soldered joint was generally superior to that of the conventional 63Sn37Pb soldered joint. At the same time, creep rupture life of the composite soldered joint was declined with increasing temperature and drop faster than that of the conventional 63Sn37 Pb eutectic soldered joint.
基金Projects(51475072,51171036)supported by the National Natural Science Foundation of China
文摘To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.
基金Project (2005DKA10400-Z23) supported by Chinese National Science and Technology InfrastructureProject (DUT10R:(3)65) supported by Fundamental Research Funds for the Central Universities,China
文摘The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated that the corrosion rate of Sn-0.75Cu solder was lower than that of Sn-0.75Cu/Cu joint.The morphology observation and phase composition analysis on the corroded product at each interesting potential suggested that Sn3O(OH)2Cl2 formed on the surface of Sn-0.75Cu solder at active dissolution stage.As the potential increased from active/passive transition stage,all the surface of Sn-0.75Cu solder was covered by the Sn3O(OH)2Cl2 and some pits appeared after the polarization test.Compared to the Sn-0.75Cu solder alloy,much more Sn3O(OH)2Cl2 formed at active dissolution stage and the pits with bigger size were observed after polarization test for the Sn-0.75Cu/Cu solder joints.The leaching test confirmed that the faster electrochemical corrosion rate resulted in the larger amount of Sn released from the Sn-0.75Cu/Cu solder joints.
基金The project supported by the National Natural Science Foundation of China (59705008)
文摘In this study, a new unified creep constitutive relation and a mod- ified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations. The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.
基金Supported by National Natural Science Foundation of China (Grant No.51775141)Heilongjiang Touyan Innovation Team Program。
文摘The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments.
基金financially supported by the National Natural Science Foundation of China(No.U0734006)Shenzhen Tongfang Electronic New Material Co.,Ltd
文摘The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.
基金supported by Science and Technology Planning Project of Shenzhen (Grant No. JCYJ201908 09161213154)Xiamen Youth Innovation Fund Project (Grant No. 3502Z20206026)Academy-level Project of Xiamen City University (Grant No.KYKJ2019-4)。
文摘In this paper,the phenomena of Mg_(2)Sn-induced Sn whisker growth were explored on the surfaces of Mg/Sn/Mg ultrasonic-assisted soldering joints after aging treatment.The in-situ observation and thermal analysis confirmed that the formation and the corrosion of Mg_(2)Sn nanoparticles were the dominant reason of Sn whisker growth.The Mg_(2)Sn accumulation at the grain boundaries would pin the dislocation slip and affect the continuity of whisker growth,and the boundary angle would thus play a decisive role in the growth shape of Sn whiskers due to the pining effect of Mg_(2)Sn.This study might be conducive to elucidating the growth behavior of Sn whiskers and provide the exploration strategy to further improve the bonding strength of Mg/Sn/Mg ultrasonic-assisted soldering joints.
基金Funded by the National Natural Science Foundation of China(No.51465039)Natural Science Foundation of Jiangxi Province(No.20151BAB206041,20161BAB206122)Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201508)
文摘The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.
文摘The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To investigate the element diffusion and the growth kinetics of intermetallics formation in solder joint, isothermal aging test was performed at temperatures of 100, 150, and 190℃, respectively. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe microstructure evolution of solder joint and to estimate the thickness and the grain size of the intermetallic layers. The IMC phases were identified by energy dispersive X-ray (EDX) and X-ray diffractometer (XRD). The results clearly show that adding about 1.0% Bi in Sn-Ag-Cu solder alloy system can refine the grain size of the IMC and inhibit the excessive IMC growth in solder joints, and therefore improve the reliability of the Pb-free solder joints. Through observation of the microstructural evolution of the solder joints, the mechanism of inhibition of IMC growth due to Bi addition was proposed.
文摘Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.
基金Project(60371046) supported by the National Natural Science Foundation of ChinaProject(9140C0301060C03001) supported by the National Defense Science and Technology Foundation of Key Laboratory, China
文摘Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size, substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77 dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments.
基金Acknowledgement This work is finaneially supported by the National Natural Science Foundation of China (Grant No. 51005058), National Hight- eeh R&D Program (863 Program ) of China (Grant No. 2007AA04Z314) and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology ( HIT. NSRIF. 2009037 ).
文摘To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. Results indicated that little IMC formed at the interface of solder and pad with 0. 1 μm thickness of Au. Even in condition of 744 hours aging, thickness of lMCs did not increase obviously. As for the joints with 0. 5 μm thickness of Au, most of AuSn4 IMCs stayed at the inteornce and were in needle-like or dendritic morphology. With the increase of aging time, AuSn4 IMCs beeame flat and changed to a continuous layer. In the joints with 4. 0 μm thickness of Au on pads, AuSn, AuSn2, AuSn4 IMCs and Au2Sn phase formed at the interface. As aging time was increased, more Sn rich IMCs formed at the interface, and evolved to AuSn4 IMCs in condition of long time aging. Thickness of AuSn4 IMCs reached about 30μm.
文摘The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.
文摘The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.
基金Supported by the National Natural Science Foundation of China(No.51475220)the State Foundation of Laboratory of Advanced Brazing Filler Metals & Technology(Zhengzhou Research Institute of Mechanical Engineering)(No.SKLABFMT-2015-03)High Level Talent Plan of Jiangsu Normal University(No.YQ2015002)
文摘Hillock Sn whiskers in Sn0.3Ag0.7Cu solder are investigated in 20 seconds in corrosive climate(95% methanol and 5% nitric acid),and the growth mechanism of hillock Sn whiskers is studied.The results indicate that hillock Sn whiskers are formed near the interface of Sn0.3Ag0.7Cu/Cu solder joints,and small corrosion pits provide conceive sites for Sn whiskers. Moreover,compressive stress induced by IMC reaction and oxidation for the whisker growth may be suggested as the driving force.