期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Dynamic Analysis of a 10 MW Floating Offshore Wind Turbine Considering the Tower and Platform Flexibility
1
作者 GAO Shan ZHANG Lixian +3 位作者 SHI Wei WANG Wenhua WANG Bin LI Xin 《Journal of Ocean University of China》 CAS CSCD 2024年第2期358-370,共13页
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ... Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined. 展开更多
关键词 floating offshore wind turbine TripleSpar semisubmersible platform rigidity and flexibility platform coupled simulation
下载PDF
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:1
2
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Platform motion minimization using model predictive control of a floating offshore wind turbine 被引量:2
3
作者 Kamran Ali Shah Ye Li +2 位作者 Ryozo Nagamune Yarong Zhou Waheed Ur Rehman 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第5期291-295,共5页
Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the pe... Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs. 展开更多
关键词 wind energy floating offshore wind turbine Platform motion Model predictive control
下载PDF
Analysis of Key Disciplinary Parameters in Floating Offshore Wind Turbines with An AI-Based SADA Method 被引量:1
4
作者 CHEN Peng HU Zhi-qiang 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期649-657,共9页
Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity ... Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity level tools and the empirical parameters pose challenges due to the strong nonlinear coupling effects of FOWTs.A novel method,named SADA,was proposed by Chen and Hu(2021)for optimizing the design and dynamic performance prediction of FOWTs in combination with AI technology.In the SADA method,the concept of Key Disciplinary Parameters(KDPs)is also proposed,and it is of crucial importance in the SADA method.The purpose of this paper is to make an in-depth investigation of the characters of KDPs and the internal correlations between different KDPs in the dynamic performance prediction of FOWTs.Firstly,a brief description of SADA is given,and the basin experimental data are used to conduct the training process of SADA.Secondly,categories and boundary conditions of KDPs are introduced.Three types of KDPs are given,and different boundary conditions are used to analyze KDPs.The results show that the wind and current in Environmental KDPs are strongly correlated with the percentage difference of dynamic response rather than that by wave parameters.In general,the optimization results of SADA consider the specific basin environment and the coupling results between different KDPs help the designers further understand the factors that have a more significant impact on the FOWTs system in a specific domain. 展开更多
关键词 floating offshore wind turbine SADA KDPs machine learning basin experiment
下载PDF
Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses 被引量:1
5
作者 MENG Long HE Yan-ping +6 位作者 ZHAO Yong-sheng YANG Jie YANGHe HAN Zhao-long YU Long MAO Wen-gang DU Wei-kang 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期608-620,共13页
The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In... The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT. 展开更多
关键词 floating offshore wind turbine dynamic responses Spar type platform FAST model test
下载PDF
Coupled Aerodynamic and Hydrodynamic Analysis of Floating Offshore Wind Turbine Using CFD Method 被引量:1
6
作者 Wu Jun Meng Long +1 位作者 Zhao Yongsheng He Yanping 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期80-87,共8页
To simulate floating offshore wind turbine(FOWT)in coupled wind-wave domain via CFD method,the NREL 5MW wind turbine supported by the OC3-Hywind Spar platform is modeled in the STAR-CCM+ software.Based on the Reynolds... To simulate floating offshore wind turbine(FOWT)in coupled wind-wave domain via CFD method,the NREL 5MW wind turbine supported by the OC3-Hywind Spar platform is modeled in the STAR-CCM+ software.Based on the Reynolds-averaged Navier-Stokes(RANS)equations and re-normalisation group(RNG)k-εturbulence model,the rotor aerodynamic simulation for wind turbine is conducted.Numerical results agree well with the NREL data.Taking advantage with the volume of fluid(VOF)method and dynamic fluid body interaction(DFBI)technology,the dynamic responses of the floating system with mooring lines are simulated under the coupled wind-wave sea condition.The free-decay tests for rigid-body degrees of freedom(DOFs)in still water and hydrodynamic tests in a regular wave are performed to validate the numerical model by comparing its result with the results simulated by FAST.Finally,the simulations of the overall FOWT system in the coupled wind-wave flow field are carried out.The relationship between the power output and dynamic motion responses of the platform is investigated.The numerical results show that the dynamic response of wind turbine performance and platform motions all vary in the same frequency as the inlet wave.During platform motion,the power output of wind turbine is more sensitive than the thrust force.This study may provide some reference for further research in the coupled aero-hydro simulation of FOWT. 展开更多
关键词 floating offshore wind turbine(FOWT) computational fluid dynamics(CFD) aerodynamic perform ance dynamic fluid body interaction
下载PDF
Study on Gyroscopic Effect of Floating Offshore Wind Turbines
7
作者 CHEN Jia-hao PEI Ai-guo +1 位作者 CHEN Peng HU Zhi-qiang 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期201-214,共14页
Compared with bottom-fixed wind turbines,the supporting platform of a floating offshore wind turbine has a larger range of motion,so the gyroscopic effects of the system will be more obvious.In this paper,the mathemat... Compared with bottom-fixed wind turbines,the supporting platform of a floating offshore wind turbine has a larger range of motion,so the gyroscopic effects of the system will be more obvious.In this paper,the mathematical analytic expression of the gyroscopic moment of a floating offshore wind turbine is derived firstly.Then,FAST software is utilized to perform a numerical analysis on the model of a spar-type horizontal axis floating offshore wind turbine,OC3-Hywind,so as to verify the correctness of the theoretical analytical formula and take an investigation on the characteristics of gyroscopic effect.It is found that the gyroscopic moment of the horizontal axis floating offshore wind turbine is essentially caused by the vector change of the rotating rotor,which may be due to the pitch or yaw motion of the floating platform or the yawing motion of the nacelle.When the rotor is rotating,the pitch motion of the platform mainly excites the gyroscopic moment in the rotor’s yaw direction,and the yaw motion of the platform largely excites the rotor’s gyroscopic moment in pitch direction,accordingly.The results show that the gyroscopic moment of the FOWT is roughly linearly related to the rotor’s inertia,the rotor speed,and the angular velocity of the platform motion. 展开更多
关键词 floating offshore wind turbine gyroscopic effects yaw motion pitch motion numerical analysis
下载PDF
A Novel Dynamics Analysis Method for Spar-Type Floating Offshore Wind Turbine
8
作者 TIAN Xin-liang XIAO Jia-ren +2 位作者 LIU Hao-xue WEN Bin-rong PENG Zhi-ke 《China Ocean Engineering》 SCIE EI CSCD 2020年第1期99-109,共11页
The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem o... The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem of moment of momentum and the Newton’s second law. The full nonlinearity of the equations of motion (EOMs) and the full nonlinear coupling between external loads and the motions are preserved in this method. Compared with the conventional methods, this method is more transparent and it can be applied directly to the large-amplitude rotation cases. An in-house code is developed to implement this method. The capability of in-house code is verified by comparing its simulation results with those predicted by FAST. Based on the in-house code, the dynamic responses of a spar-type FOWT system are investigated under various conditions. 展开更多
关键词 dynamics analysis method floating offshore wind turbine spar platform dynamic yawing
下载PDF
Current Status and Future Trends for Mooring Systems of Floating Offshore Wind Turbines
9
作者 Ruyan Yang Xiangyuan Zheng +1 位作者 Jinlu Chen Yufei Wu 《Sustainable Marine Structures》 2022年第2期40-54,共15页
With the increasing demand of energy and the limitation of bottom-fixed wind turbines in moderate and deep waters,floating offshore wind turbines are doomed to be the right technical choice and they are bound to enter... With the increasing demand of energy and the limitation of bottom-fixed wind turbines in moderate and deep waters,floating offshore wind turbines are doomed to be the right technical choice and they are bound to enter a new era of rapid development.The mooring system is a vital system of a floating wind turbine for station-keeping under harsh environmental con­ditions.In terms of existing floating wind turbine projects,this paper is devoted to discussing the current status of mooring systems and mooring equipment.This paper also presents the mooring analysis methods and points out the technical difficulties and challenges in mooring design,in­stallation,operation and maintenance stages.Finally,the developing trends of the mooring system are summarized,aiming to provide a reference for future mooring research. 展开更多
关键词 Mooring system Mooring equipment Mooring analysis floating offshore wind turbines Mooring line ANCHOR
下载PDF
Coupled dynamic response analysis of multi-column floating offshore wind turbine with low center of gravity
10
作者 Jie Yang Yan-ping He +2 位作者 Yong-sheng Zhao Xiao-yan Yang Guo-rong Zhang 《Journal of Ocean Engineering and Science》 SCIE 2024年第1期25-39,共15页
To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and v... To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and validated.The multi-column low CG platform is designed to support a 6MW wind turbine class and operated at a water depth of 50m in the South China Sea.The frequency domain software WADAM and time domain software NREL-FAST are used to simulate coupled dynamic responses of the floating wind turbine system with second-order wave loads considering.The dynamic behaviors of multi-column low CG FOWT system under normal operation and parked conditions are presented.The influence of second-order wave force on the motion responses of the multi-column platform,fore-aft force and moment of the tower base and mooring force are researched respectively.The results demonstrate that the coupled dynamic responses at rated operating condition and extreme condition meet the normal operating requirements and extreme survival requirements of FOWT system in the shallow water(50m)of South China Sea.In addition,it is found that,the wave frequency response gradually replaces the second-order low frequency response as the main influencing factor of the coupled dynamic response of the FOWT system with the increasing severity of the sea states.However,in general,the magnitude of second-order low frequency response increases with the increasing severity of the design load case.Thus,in the subsequent design of the shallow water FOWT system,the second-order effects should be paid enough attention. 展开更多
关键词 floating offshore wind turbine Multi-column platform Second-order wave force Concept design Coupled dynamic response
原文传递
Research on Dynamic Response Characteristics of 6 MW Spar-Type Floating Offshore Wind Turbine 被引量:4
11
作者 孟龙 何炎平 +2 位作者 周涛 赵永生 刘亚东 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第4期505-514,共10页
A 6 MW spar-type floating offshore wind turbine(FOWT) model is put forward and a fully coupled aero-hydro-servo-elastic time domain model is established in the fatigue,aerodynamics,structures and turbulence(FAST) code... A 6 MW spar-type floating offshore wind turbine(FOWT) model is put forward and a fully coupled aero-hydro-servo-elastic time domain model is established in the fatigue,aerodynamics,structures and turbulence(FAST) code.Influence rules of wind load and wave load on the characteristics of 6 MW spar-type FOWT are investigated.Firstly,validation of the model is carried out and a satisfactory result is obtained.The maximal deviations of rotor thrust and power between simulation results and reference values are 4.54% and-2.74%,respectively.Then the characteristics,including rotor thrust,rotor power,out-of-plane blade deflection,tower base fore-aft bending moment,and mooring line tension,are researched.The results illustrate that the mean value of dynamic response characteristics is mainly controlled by the wind-induced action.For characteristics of tower base fore-aft bending moment and platform pitch motion,the oscillation is dominated by the wave-induced action during all conditions considered.For characteristics of out-of-plane blade tip deflection and mooring line tension,the oscillation is commanded by combination effect of wave and wind loads when the wind speed is lower than the rated wind speed(hereinafter referred to as below rated wind speed) and is controlled by the wave-induced action when the wind speed is higher than the rated wind speed(hereinafter referred to as above rated wind speed).As to the rotor thrust and power,the oscillation is dominated by the wind induced action at below rated wind speed and by the combination action of wind and wave loads at above rated wind speed.The results should be useful to the detailed design and model basin test of the 6 MW spar-type FOWT. 展开更多
关键词 floating offshore wind turbine(FOWT) time domain response wind and wave loads dynamic response characteristics
原文传递
The typhoon effect on the aerodynamic performance of a floating offshore wind turbine 被引量:1
12
作者 Zhe Ma Wei Li +1 位作者 Nianxin Ren Jinping Ou 《Journal of Ocean Engineering and Science》 SCIE 2017年第4期279-287,共9页
The wind energy resource is considerably rich in the deep water of China South Sea,where wind farms have to face the challenge of extreme typhoon events.In this work,the typhoon effect on the aerodynamic performance o... The wind energy resource is considerably rich in the deep water of China South Sea,where wind farms have to face the challenge of extreme typhoon events.In this work,the typhoon effect on the aerodynamic performance of the 5MW OC3-Hywind floating offshore wind turbine(FOWT)system has been investigated,based on the Aero-Hydro-Servo-Elastic FAST code.First,considering the full field observation data of typhoon“Damrey”is a long duration process with significant turbulence and high wind speed,so one 3-h representative truncated typhoon wind speed time history has been selected.Second,the effects of both the(variable-speed and collective-pitch)control system of NREL 5 MW wind turbine and the motion of the floating platform on the blade aerodynamic performance of the FOWT system during the representative typhoon time history has been investigated,based on blade element momentum(BEM)theory(coupled with potential theory for the calculation of the hydrodynamic loads of the Spar platform).Finally,the effects of different wind turbine control strategies,control parameter(KP-KI)combinations,wave heights and parked modes on the rotor aerodynamic responses of the FOWT system have been clarified.The extreme typhoon event can result in considerably large extreme responses of the rotor thrust and the generated power due to the possible blade pitch angle error phenomenon.One active-parked strategy has been proposed for reducing the maximum aerodynamic responses of the FOWT system during extreme typhoon events. 展开更多
关键词 TYPHOON floating offshore wind turbine Aerodynamic performance Control system FAST
原文传递
Preliminary Design of a Submerged Support Structure for Floating Wind Turbines
13
作者 LE Conghuan ZHANG Jian +2 位作者 DING Hongyan ZHANG Puyang WANG Guilan 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1265-1282,共18页
Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depth... Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depths(50-200 m).The performance of SFOWTs can be improved through a judicious choice of configuration,pretension,and mooring line layout.Four SFOWTs with different configurations and a similar mass,named Cyl-4,Cub-4,Cyl-3,and Hex-3,were designed and analyzed.The responses of the four SFOWTs were predicted under operational condition and extreme condition.The results show that the four SFOWTs exhibited good performance under both conditions.The effect of platform configurations on power output was negligible under the operational condition.Under the extreme condition,among the four SFOWTs,the mean bending moments at the tower base were very close,while the maximum values differed by up to 21.5%,due to the configurations.The effect of wind-wave misalignment under the extreme condition was further analyzed.In general,the motion performances of the four-pontoon SFOWTs,Cyl-4 and Cub-4,were superior to those of the three-pontoon SFOWTs,Cyl-3 and Hex-3.Optimization studies of the mooring system were carried out on Cub-4 with different mooring line pretensions and four mooring layouts.The optimized Cub-4 could reduce the maximum motion responses in the surge,heave,and yaw by 97.7%,91.5%,and 98.7%,respectively. 展开更多
关键词 floating offshore wind turbine structure design dynamic response aero-hydro-servo-elastic coupled analysis
下载PDF
基于浮式风机实验与数值分析的方法论与挑战研究综述 被引量:2
14
作者 陈鹏 陈嘉豪 胡志强 《Journal of Marine Science and Application》 CSCD 2020年第3期339-361,共23页
Due to the dissimilar scaling issues,the conventional experimental method of FOWTs can hardly be used directly to validate the full-scale global dynamic responses accurately.Therefore,it is of absolute necessity to fi... Due to the dissimilar scaling issues,the conventional experimental method of FOWTs can hardly be used directly to validate the full-scale global dynamic responses accurately.Therefore,it is of absolute necessity to find a more accurate,economic and efficient approach,which can be utilized to predict the full-scale global dynamic responses of FOWTs.In this paper,a literature review of experimental-numerical methodologies and challenges for FOWTs is made.Several key challenges in the conventional basin experiment issues are discussed,including scaling issues;coupling effects between aero-hydro and structural dynamic responses;blade pitch control strategies;experimental facilities and calibration methods.Several basin experiments,industrial projects and numerical codes are summarized to demonstrate the progress of hybrid experimental methods.Besides,time delay in hardware-in-the-loop challenges is concluded to emphasize their significant role in real-time hybrid approaches.It is of great use to comprehend these methodologies and challenges,which can help some future researchers to make a footstone for proposing a more efficient and functional hybrid basin experimental and numerical method. 展开更多
关键词 floating offshore wind turbines Hybrid approach Basin experiment Numerical simulation wind energy
下载PDF
Shared mooring systems for offshore floating wind farms: A review
15
作者 Hang Xu Shengjie Rui +3 位作者 Kanmin Shen Liangliang Jiang Haojie Zhang Long Teng 《Energy Reviews》 2024年第1期76-89,共14页
Offshore wind energy,as a form of renewable power,has seen rapid development in recent years.While fixedbottom wind turbines are typically used in water depths less than 50 m,the utilization of floating offshore wind ... Offshore wind energy,as a form of renewable power,has seen rapid development in recent years.While fixedbottom wind turbines are typically used in water depths less than 50 m,the utilization of floating offshore wind turbines(FOWTs)becomes essential for deeper waters.Secure and effective mooring systems play a crucial role in making FOWTs commercially viable.The concept of a shared mooring system offers an innovative solution for deploying floating wind farms in clusters or arrays,which can reduce overall construction costs for large-scale floating wind farms.It is imperative to optimize the shared mooring arrangement for maximum cost-effectiveness and wind farm stability.However,implementing a shared mooring system introduces complexity to the dynamics of FOWTs,requiring the development of advanced simulation tools to meet modelling requirements.Under the shared mooring arrangement,mooring lines and anchors face more significant challenges,such as chain-seabed interactions,soil cyclic weakening,and anchor out-of-plane loading,which underscore the need for innovative,reliable,and efficient shared anchor designs.This article offers an overview of the current research status on shared mooring systems for floating wind farms,which might serve as a valuable reference for the construction of large-scale floating wind farms worldwide. 展开更多
关键词 floating offshore wind turbines wind farm Shared mooring Shared anchor Renewable energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部