This paper presents a novel flocking algorithm based on a memory-enhanced disturbance observer.To compensate for external disturbances,a filtered regressor for the double integrator model subject to external disturban...This paper presents a novel flocking algorithm based on a memory-enhanced disturbance observer.To compensate for external disturbances,a filtered regressor for the double integrator model subject to external disturbances is designed to extract the disturbance information.With the filtered regressor method,the algorithm has the advantage of eliminating the need for acceleration information,thus reducing the sensor requirements in applications.Using the information obtained from the filtered regressor,a batch of stored data is used to design an adaptive disturbance observer,ensuring that the estimated values of the parameters of the disturbance system equation and the initial value converge to their actual values.The result is that the flocking algorithm can compensate for external disturbances and drive agents to achieve the desired collective behavior,including virtual leader tracking,inter-distance keeping,and collision avoidance.Numerical simulations verify the effectiveness of the algorithm proposed in the present study.展开更多
This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of un...This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.展开更多
Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and dire...Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.展开更多
This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-d...This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.展开更多
For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the prop...For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the proposed control scheme are:1)According to the different hysteresis input characteristics of each agent in the multi-agent system,a hysteresis quantization inverse compensator is designed to eliminate the influence of hysteresis characteristics on the system while ensuring that the quantized signal maintains the desired value.2)A barrier Lyapunov function is introduced for the first time in the hysteretic multi-agent system.By constructing state constraint control strategy for the hysteretic multi-agent system,it ensures that all the states of the system are always maintained within a predetermined range.3)The designed adaptive consensus output-feedback quantization control scheme allows the hysteretic system to have unknown parameters and unknown disturbance,and ensures that the input signal transmitted between agents is the quantization value,and the introduced quantizer is implemented under the condition that only its sector bound property is required.The stability analysis has proved that all signals of the closed-loop are semi-globally uniformly bounded.The Star Sim hardware-in-the-loop simulation certificates the effectiveness of the proposed adaptive quantized control scheme.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
In this paper, we consider the distributed adaptive fault-tolerant output regulation problem for heterogeneous multiagent systems with matched system uncertainties and mismatched coupling uncertainties among subsystem...In this paper, we consider the distributed adaptive fault-tolerant output regulation problem for heterogeneous multiagent systems with matched system uncertainties and mismatched coupling uncertainties among subsystems under the influence of actuator faults. First, distributed finite-time observers are proposed for all subsystems to observe the state of the exosystem. Then, a novel fault-tolerant controller is designed to compensate for the influence of matched system uncertainties and actuator faults. By using the linear matrix inequality technique, a sufficient condition is provided to guarantee the solvability of the considered problem in the presence of mismatched coupling uncertainties. Moreover, it is shown that the system in closed-loop with the developed controller can achieve output regulation by using the Lyapunov stability theory and cyclic-small-gain theory.Finally, a numerical example is given to illustrate the effectiveness of the obtained result.展开更多
In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the intera...In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
In this paper, we study the leader-following rendezvous and flocking problems for a class of second-order nonlinear multi- agent systems, which contain both external disturbances and plant uncertainties. What differs ...In this paper, we study the leader-following rendezvous and flocking problems for a class of second-order nonlinear multi- agent systems, which contain both external disturbances and plant uncertainties. What differs our problems from the conventional leader-following consensus problem is that we need to preserve the connectivity of the communication graph instead of assuming the connectivity of the communication graph. By integrating the adaptive control technique, the distributed observer method and the potential function method, the two problems are both solved. Finally, we apply our results to a group of van der Pol oscillators.展开更多
In this paper,the event-triggered consensus control problem for nonlinear uncertain multi-agent systems subject to unknown parameters and external disturbances is considered.The dynamics of subsystems are second-order...In this paper,the event-triggered consensus control problem for nonlinear uncertain multi-agent systems subject to unknown parameters and external disturbances is considered.The dynamics of subsystems are second-order with similar structures,and the nodes are connected by undirected graphs.The event-triggered mechanisms are not only utilized in the transmission of information from the controllers to the actuators,and from the sensors to the controllers within each agent,but also in the communication between agents.Based on the adaptive backstepping method,extra estimators are introduced to handle the unknown parameters,and the measurement errors that occur during the event-triggered communication are well handled by designing compensating terms for the control signals.The presented distributed event-triggered adaptive control laws can guarantee the boundness of the consensus tracking errors and the Zeno behavior is avoided.Meanwhile,the update frequency of the controllers and the load of communication burden are vastly reduced.The obtained control protocol is further applied to a multi-input multi-output second-order nonlinear multi-agent system,and the simulation results show the effectiveness and advantages of our proposed method.展开更多
So far,distributed adaptive consensus problems for uncertain nonlinear multi-agent systems have not yet been extensively studied.Compared with centralised adaptive control,some new challenges need to be well addressed...So far,distributed adaptive consensus problems for uncertain nonlinear multi-agent systems have not yet been extensively studied.Compared with centralised adaptive control,some new challenges need to be well addressed,for examples,(i)how to reach asymptotically consensus tracking with directed topology condition,by using totally distributed adaptive control strategies;(ii)how to ensure globally uniform boundedness of closed-loop systems while achieving leaderless consensus with semi-positive definite Laplacian matrix;(iii)how to maintain system performance while effectively reducing the communication burden among connected agents.This paper is mainly devoted to report some recent advances in distributed adaptive consensus control.Besides,some interesting research topics which are worthy of further investigation will also be discussed.展开更多
In this paper, we first consider the adaptive leader-following consensus problem for a class of nonlinear parameterized mixedorder multi-agent systems with unknown control coefficients and time-varying disturbance par...In this paper, we first consider the adaptive leader-following consensus problem for a class of nonlinear parameterized mixedorder multi-agent systems with unknown control coefficients and time-varying disturbance parameters of the same period. Neural networks and Fourier series expansions are used to describe the unknown nonlinear periodic time-varying parameterized function.A distributed control protocol is designed based on adaptive control, matrix theory, and Nussbaum function. The robustness of the distributed control protocol is analyzed by combining the stability analysis theory of closed-loop systems. On this basis, this paper discusses the case of time-varying disturbance parameters with non-identical periods, expanding the application scope of this control protocol. Finally, the effectiveness of the algorithm is verified by a simulation example.展开更多
This paper studies the switching topologies and tracking agent replacements for a class of nonlinear multi-agent systems with external disturbances.In particular,it is assumed that a number of monitoring agents are ra...This paper studies the switching topologies and tracking agent replacements for a class of nonlinear multi-agent systems with external disturbances.In particular,it is assumed that a number of monitoring agents are randomly deployed in a two-dimensional space.The agents are committed to tracking any intrusion targets in this area.When one of the following agents exits tracking for some reasons,the agent closer to the target joins the tracking team to ensure the number of tracking agents does not change.In order to achieve the successful tracking of the target,this paper designs a sliding mode controller for the relay multi-agent system with tracking agent replacements.Furthermore,an adaptive law is proposed to estimate the upper bound of disturbance in the relay tracking process.Next,the stability of the overall system will be analysed by applying the multiple Lyapunov function method based on the average dwell time.Finally,the effectiveness of the tracking strategy is verified by numerical simulations.展开更多
The intra-cluster lag consensus means that the agents in the same cluster can achieve lag consensus asymptotically while the agents in different clusters can achieve different consensus.In this paper,the authors inves...The intra-cluster lag consensus means that the agents in the same cluster can achieve lag consensus asymptotically while the agents in different clusters can achieve different consensus.In this paper,the authors investigate the observer-based intra-cluster lag consensus problems of multi-agent systems(MASs)with general linear dynamics and nonlinear dynamics via intermittent adaptive pinning control.The interaction network is considered to be weakly connected,i.e.,it is not necessary to be strongly connected,in-degree balanced or contain a directed spanning tree.To realise the intra-cluster lag consensus,a class of observers is designed to estimate the states of followers.Then a class of observer-based intermittent adaptive pinning control protocols is proposed according to the difference that the agents receive information source.Moreover,the pinning gains are designed to be intermittent adaptive and have an exponential convergence rate,which will effectively reduce communication costs,avoid the pinning gains being larger than those needed in real applications and guarantee the pinning gains quickly converge to steady value.Correspondingly,some sufficient consensus criteria are derived and rigorous proofs are given based on matrix theory and Lyapunov stability theory.Finally,the effectiveness for the proposed intermittent adaptive pinning control strategy is validated by a numerical simulation.展开更多
The distributed observer approach has been an effective way to synthesise a distributed control law for a multi-agent system.However,this approach assumes that all the followers know the system matrix of the leader sy...The distributed observer approach has been an effective way to synthesise a distributed control law for a multi-agent system.However,this approach assumes that all the followers know the system matrix of the leader system,and this assumption may not be desirable in some applications.In this note,we will further introduce an adaptive distributed observer,which is able to estimate both the state and the system matrix of the leader and thus does not require that all the followers know the system matrix of the leader system.We will also point out some applications of the adaptive distributed observer to several cooperative control problems of multiagent systems such as the leader-following consensus problem,the cooperative output regulation problem and rendezvous and/or flocking.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers ar...We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.展开更多
Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the fin...Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.展开更多
文摘This paper presents a novel flocking algorithm based on a memory-enhanced disturbance observer.To compensate for external disturbances,a filtered regressor for the double integrator model subject to external disturbances is designed to extract the disturbance information.With the filtered regressor method,the algorithm has the advantage of eliminating the need for acceleration information,thus reducing the sensor requirements in applications.Using the information obtained from the filtered regressor,a batch of stored data is used to design an adaptive disturbance observer,ensuring that the estimated values of the parameters of the disturbance system equation and the initial value converge to their actual values.The result is that the flocking algorithm can compensate for external disturbances and drive agents to achieve the desired collective behavior,including virtual leader tracking,inter-distance keeping,and collision avoidance.Numerical simulations verify the effectiveness of the algorithm proposed in the present study.
基金Research Grants Council of Hong Kong under Grant CityU-11205221.
文摘This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project(funded by Yancheng Science and Technology Association)The 2024 Yancheng Key Research and Development Plan(Social Development)projects include“Research and Application of Multi-Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment.”。
文摘Distributed adaptive predefined-time bipartite containment for a class of second-order nonlinear multi-agent systems are studied with actuator faults.The communication topology of multi-agent systems is fixed and directed.To ensure that followers can reach the convex hull spanned by leaders under the conditions of actuator faults,the sliding mode method is introduced.Control protocol for multi-agent systems demonstrates its effectiveness.Finally,simulations are provided to verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61773056)the Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(USTB)(BK19AE018)+2 种基金the Fundamental Research Funds for the Central Universities of USTB(FRF-TP-20-09B,230201606500061,FRF-DF-20-35,FRF-BD-19-002A)supported by Zhejiang Natural Science Foundation(LD21F030001)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and Information and Communications Technology)(NRF-2020R1A2C1005449)。
文摘This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.
基金the National Natural Science Foundation of China(61673101,61973131,61733006,U1813201)the Science and Technology Project of Jilin Province(20210509053RQ)the Fourteenth Five Year Science Research Plan of Jilin Province(JJKH20220115KJ)。
文摘For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the proposed control scheme are:1)According to the different hysteresis input characteristics of each agent in the multi-agent system,a hysteresis quantization inverse compensator is designed to eliminate the influence of hysteresis characteristics on the system while ensuring that the quantized signal maintains the desired value.2)A barrier Lyapunov function is introduced for the first time in the hysteretic multi-agent system.By constructing state constraint control strategy for the hysteretic multi-agent system,it ensures that all the states of the system are always maintained within a predetermined range.3)The designed adaptive consensus output-feedback quantization control scheme allows the hysteretic system to have unknown parameters and unknown disturbance,and ensures that the input signal transmitted between agents is the quantization value,and the introduced quantizer is implemented under the condition that only its sector bound property is required.The stability analysis has proved that all signals of the closed-loop are semi-globally uniformly bounded.The Star Sim hardware-in-the-loop simulation certificates the effectiveness of the proposed adaptive quantized control scheme.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金supported in part by the National Natural Science Foundation of China(61473195,61603081,61773131,61773056,61873306,U1966202,61803305,61873338)the China Postdoctoral Science Foundation(2015M580513)Research Fund for the Taishan Scholar Project of Shandong Province of China(TSQN201812052)。
文摘In this paper, we consider the distributed adaptive fault-tolerant output regulation problem for heterogeneous multiagent systems with matched system uncertainties and mismatched coupling uncertainties among subsystems under the influence of actuator faults. First, distributed finite-time observers are proposed for all subsystems to observe the state of the exosystem. Then, a novel fault-tolerant controller is designed to compensate for the influence of matched system uncertainties and actuator faults. By using the linear matrix inequality technique, a sufficient condition is provided to guarantee the solvability of the considered problem in the presence of mismatched coupling uncertainties. Moreover, it is shown that the system in closed-loop with the developed controller can achieve output regulation by using the Lyapunov stability theory and cyclic-small-gain theory.Finally, a numerical example is given to illustrate the effectiveness of the obtained result.
基金supported by the National Natural Science Foundation of China(61303211)Zhejiang Provincial Natural Science Foundation of China(LY17F030003,LY15F030009)
文摘In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
文摘In this paper, we study the leader-following rendezvous and flocking problems for a class of second-order nonlinear multi- agent systems, which contain both external disturbances and plant uncertainties. What differs our problems from the conventional leader-following consensus problem is that we need to preserve the connectivity of the communication graph instead of assuming the connectivity of the communication graph. By integrating the adaptive control technique, the distributed observer method and the potential function method, the two problems are both solved. Finally, we apply our results to a group of van der Pol oscillators.
基金supported by National Key R&D Program of China(No.2018YFA0703800)Science Fund for Creative Research Group of the National Natural Science Foundation of China(No.61621002)。
文摘In this paper,the event-triggered consensus control problem for nonlinear uncertain multi-agent systems subject to unknown parameters and external disturbances is considered.The dynamics of subsystems are second-order with similar structures,and the nodes are connected by undirected graphs.The event-triggered mechanisms are not only utilized in the transmission of information from the controllers to the actuators,and from the sensors to the controllers within each agent,but also in the communication between agents.Based on the adaptive backstepping method,extra estimators are introduced to handle the unknown parameters,and the measurement errors that occur during the event-triggered communication are well handled by designing compensating terms for the control signals.The presented distributed event-triggered adaptive control laws can guarantee the boundness of the consensus tracking errors and the Zeno behavior is avoided.Meanwhile,the update frequency of the controllers and the load of communication burden are vastly reduced.The obtained control protocol is further applied to a multi-input multi-output second-order nonlinear multi-agent system,and the simulation results show the effectiveness and advantages of our proposed method.
基金This work was supported by National Key Research and Development Program of China[grant number 2018AAA0101100]National Natural Science Foundation of China[grant numbers 61973017,61673035].
文摘So far,distributed adaptive consensus problems for uncertain nonlinear multi-agent systems have not yet been extensively studied.Compared with centralised adaptive control,some new challenges need to be well addressed,for examples,(i)how to reach asymptotically consensus tracking with directed topology condition,by using totally distributed adaptive control strategies;(ii)how to ensure globally uniform boundedness of closed-loop systems while achieving leaderless consensus with semi-positive definite Laplacian matrix;(iii)how to maintain system performance while effectively reducing the communication burden among connected agents.This paper is mainly devoted to report some recent advances in distributed adaptive consensus control.Besides,some interesting research topics which are worthy of further investigation will also be discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62063031,62106186,62073254,62103136)the Fundamental Research Funds for the Central Universities (Grant Nos. XJS18012,QTZX22049,XJS220704,and 20101196862)the Young Talent Fund of University Association for Science and Technology in Shaanxi,China (Grant No. 20180502)。
文摘In this paper, we first consider the adaptive leader-following consensus problem for a class of nonlinear parameterized mixedorder multi-agent systems with unknown control coefficients and time-varying disturbance parameters of the same period. Neural networks and Fourier series expansions are used to describe the unknown nonlinear periodic time-varying parameterized function.A distributed control protocol is designed based on adaptive control, matrix theory, and Nussbaum function. The robustness of the distributed control protocol is analyzed by combining the stability analysis theory of closed-loop systems. On this basis, this paper discusses the case of time-varying disturbance parameters with non-identical periods, expanding the application scope of this control protocol. Finally, the effectiveness of the algorithm is verified by a simulation example.
基金supported by the National Natural Science Foundation of China[grant number 61903022].
文摘This paper studies the switching topologies and tracking agent replacements for a class of nonlinear multi-agent systems with external disturbances.In particular,it is assumed that a number of monitoring agents are randomly deployed in a two-dimensional space.The agents are committed to tracking any intrusion targets in this area.When one of the following agents exits tracking for some reasons,the agent closer to the target joins the tracking team to ensure the number of tracking agents does not change.In order to achieve the successful tracking of the target,this paper designs a sliding mode controller for the relay multi-agent system with tracking agent replacements.Furthermore,an adaptive law is proposed to estimate the upper bound of disturbance in the relay tracking process.Next,the stability of the overall system will be analysed by applying the multiple Lyapunov function method based on the average dwell time.Finally,the effectiveness of the tracking strategy is verified by numerical simulations.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61977004 and 61503016in part by the Fundamental Research Funds for the Central Universities under Grant Nos.YWF20-BJ-J-634 and YWF-19-BJ-J-259。
文摘The intra-cluster lag consensus means that the agents in the same cluster can achieve lag consensus asymptotically while the agents in different clusters can achieve different consensus.In this paper,the authors investigate the observer-based intra-cluster lag consensus problems of multi-agent systems(MASs)with general linear dynamics and nonlinear dynamics via intermittent adaptive pinning control.The interaction network is considered to be weakly connected,i.e.,it is not necessary to be strongly connected,in-degree balanced or contain a directed spanning tree.To realise the intra-cluster lag consensus,a class of observers is designed to estimate the states of followers.Then a class of observer-based intermittent adaptive pinning control protocols is proposed according to the difference that the agents receive information source.Moreover,the pinning gains are designed to be intermittent adaptive and have an exponential convergence rate,which will effectively reduce communication costs,avoid the pinning gains being larger than those needed in real applications and guarantee the pinning gains quickly converge to steady value.Correspondingly,some sufficient consensus criteria are derived and rigorous proofs are given based on matrix theory and Lyapunov stability theory.Finally,the effectiveness for the proposed intermittent adaptive pinning control strategy is validated by a numerical simulation.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region[grant number 14200515].
文摘The distributed observer approach has been an effective way to synthesise a distributed control law for a multi-agent system.However,this approach assumes that all the followers know the system matrix of the leader system,and this assumption may not be desirable in some applications.In this note,we will further introduce an adaptive distributed observer,which is able to estimate both the state and the system matrix of the leader and thus does not require that all the followers know the system matrix of the leader system.We will also point out some applications of the adaptive distributed observer to several cooperative control problems of multiagent systems such as the leader-following consensus problem,the cooperative output regulation problem and rendezvous and/or flocking.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203142)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2014202206 and F2017202009)
文摘We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB845302)the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant No.11472290)
文摘Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.