The monomer agglomeration of nonmetallic inclusions was simulated with a diffusion limited aggregation (DLA) model of the fractal theory. The simulation study with a random two-dimensional diffusion was carried out....The monomer agglomeration of nonmetallic inclusions was simulated with a diffusion limited aggregation (DLA) model of the fractal theory. The simulation study with a random two-dimensional diffusion was carried out. The results indicate that the DLA model can be used for the simulation of agglomeration behavior of the cluster-type inclusions. The morphology of clusters was observed with SEM and compared with the simulated agglomerates. The modelling procedure of the DLA model is applicable for the agglomeration process. The uncertainty of agglomeration process and the persuasive average agglomerative ratio was analyzed. The factors about the agglomerative ratio with the collision path distance and the size of particles or seed were discussed. The adherence of the nonmetallic inclusions on the dam, the weir and the walls of a tundish, and the absorption of inclusions by stopper or nozzle were also discussed.展开更多
文摘The monomer agglomeration of nonmetallic inclusions was simulated with a diffusion limited aggregation (DLA) model of the fractal theory. The simulation study with a random two-dimensional diffusion was carried out. The results indicate that the DLA model can be used for the simulation of agglomeration behavior of the cluster-type inclusions. The morphology of clusters was observed with SEM and compared with the simulated agglomerates. The modelling procedure of the DLA model is applicable for the agglomeration process. The uncertainty of agglomeration process and the persuasive average agglomerative ratio was analyzed. The factors about the agglomerative ratio with the collision path distance and the size of particles or seed were discussed. The adherence of the nonmetallic inclusions on the dam, the weir and the walls of a tundish, and the absorption of inclusions by stopper or nozzle were also discussed.