Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propo...Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o.展开更多
基金supported by the National Natural Science Foundation of China under Grant number U2243222,42071413,and 41971397.
文摘Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o.