On the basis of water-balance equation in Dongting Lake and Xiang Zi Yuan-Li River drainage areas, a possib1e flood height relating to the rainfall precipitation in these areas has been inferred. According to the floo...On the basis of water-balance equation in Dongting Lake and Xiang Zi Yuan-Li River drainage areas, a possib1e flood height relating to the rainfall precipitation in these areas has been inferred. According to the flood simulation, some synthetic maintenance strategies to prevent future catastrophic f1oods in Dongting Lake drainage area have been also presented.展开更多
Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recogniz...Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.展开更多
While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitr...While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitrogen and phosphorus of a flooded paddy water system after fertilizer application and at each growth stage so as to obtain the optimal drainage time at each growth stage. Four treatments with different water level management methods at each growth stage were conducted under the condition of ten-day continuous flooding. Results show that the ammonia nitrogen ( NH4-N ) concentration reached the peak value once the fertilizer was applied, and then decreased to a relatively low level seven to ten days later, and that the nitrate nitrogen (NO^-N) concentration gradually rose to its peak value, which appeared later in subsurface water than in surface water. Continuous flooding could effectively reduce the concentrations of NH^-N , NO3-N, and total phosphorus (TP) in surface water. However, the paddy water disturbance, in the process of soil surface adsorption and nitrification, caused NH]-N to be released and increased the concentrations of NH4-N and NO^-N in surface water. A multi-objective controlled drainage model based on environmental factors was established in order to obtain the optimal drainage time at each growth stage and better guide the drainage practices of farmers. The optimal times for surface drainage are the fourth, sixth, fifth, and sixth days after flooding at the tillering, jointing-booting, heading-flowering, and milking stages, respectively.展开更多
Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as inten...Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.展开更多
Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, ...Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference.展开更多
Increased variability in rainfall events and high production input costs are driving agricultural producers to consider subsurface water management in the flat Red River of the North Valley in Eastern North Dakota and...Increased variability in rainfall events and high production input costs are driving agricultural producers to consider subsurface water management in the flat Red River of the North Valley in Eastern North Dakota and Northwestern Minnesota, USA. Subsurface tile incorporated with water table control structures was utilized from 2009 to 2011 to investigate the response of hard red spring wheat (HRSW) (Triticum aestivum L. emend. Thell.) for yield, disease, and other agronomic characteristics to soil water management. A factorial arrangement of four cultivars, two seed treatments, and two foliar fungicide treatments in a split-plot design with closed and open tile as whole-plots was used. Mean wheat yields averaged across years were not significantly different with closed or open tile treatments. There existed an optimum management practice where plant useable water was not freely drained and analyzing the data with the optimum water management for each year found the optimum water table managed treatment yielded higher with 3812 kg ha-1 compared with limited water table management with 3679 kg ha-1. In 2011, the cultivars Faller and Howard were taller, and Traverse had lower root disease severity. In 2010 and 2011, Howard and Traverse had more leaf disease with open tile compared with closed tile. Across years, there was no difference in root disease, stand, number of spikes, crop height, or yield response to appli-cation of seed treatments with open or closed tile. In 2010, there was a 3.7% yield advantage with application of seed treatment on open tile. Across years, there was no yield response to application of foliar fungicides;however, wheat yield with foliar fungicide was 5% higher than without application in 2010. Producers should be using water table control and disease management to maximize HRSW yield. Further research should investigate water table management throughout the season based on weather conditions.展开更多
The iron ore minerals reservoir of Golgohar Mine#3 is more than 660 million tons.It is the biggest in Iran and rate of ore extraction is more than 15 million tons per year.The pit takes place on the way of runoff path...The iron ore minerals reservoir of Golgohar Mine#3 is more than 660 million tons.It is the biggest in Iran and rate of ore extraction is more than 15 million tons per year.The pit takes place on the way of runoff pathway of this watershed and it needs an especial strategy for conserving the pit mine during next imminent floods.The area of Mine# 3 watershed is 20785700 square meters and its general slope in its topography map is 0.59 percent;then initial scheming indicates it can causes a great deal of problems for mining operation n the next floods;particularly,the pit is located into degree 4th sub branch of a main ephemeral river.For this purpose,the Soil Conservation Service Curve Number(SCS)method was employed to estimate intervals period of next floods based on the magnitude,the intensity and the duration of precipitation events data.Conceptual design of runoff drainage of the watershed was designed to lead the flood to a better pathway location.The Mine#3 overburden deposition occupies a huge area on the watershed;and it has been considered and redesigned in terms of size,form,dimensions and location to manage as a physical obstacle against next floods.Hydraulic calculations were applied for designing two essential open channels which can preserve the pit.展开更多
Commercial coal production in the southern region of Brazil (comprising the Paraná, Santa Catarina, and Rio Grande do Sul states) has been occurring since the beginning of the twentieth century. Regarding the San...Commercial coal production in the southern region of Brazil (comprising the Paraná, Santa Catarina, and Rio Grande do Sul states) has been occurring since the beginning of the twentieth century. Regarding the Santa Catarina coalfields, about 60% - 65% of the ROM coal is discharged at dump deposits as waste. These wastes can lead to the formation of acid mine drainage (AMD), a source of ground and surface water pollution. One of the technologies used for preventing AMD consists of the alkaline additive method. Thus, the aim of this work was to study, at laboratory scale, the DAM control by blending coal waste with a metallurgical slag. A coal-tailing sample was collected from a coal mine, and the slag was obtained from a semi-integrated steel plant. Static tests were carried out by the acid-base account method to determine the balance between the acid-producing and acid-consuming (neutralizing) mineral components of the samples. Kinetic tests were conducted in humidity cells, following the ASTM D 5744-96 method, for a period of 80 weeks. The results showed that the coal tailing generates AMD. However, environmental problems can be minimized by mixing the coal waste with the metallurgical slag in 1:1 or 1:1.5 proportions. The kinetic experiments proved that, in this condition, the lixiviation presents a higher pH and a lower concentration of acidity, metals, and sulfate. Finally, it is possible to conclude that the blending slag in coal tailing deposits can be a viable alternative for DAM control in coal mining.展开更多
In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not...In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not considered in most of the hydrological analysis in floodproofing plan and design. In this paper, a method of evaluating the hydraulic risk is developed by employing risk theory, and the concept can easily be extended to other types of risk analysis. As a result, it is possible not to consider the hydraulic resks when the design hydrologic risk of flood control dam is lger. Otherwise, the hydraulic risks must be noticed. The research is very helpful for the development of the flood control theory used at present.展开更多
[Objective] To discuss the application of simulation technique in preliminary solution of reservoir flood control of.[Method] Based on the study of river system simulation theory,the InfoWorks RS system was adopted to...[Objective] To discuss the application of simulation technique in preliminary solution of reservoir flood control of.[Method] Based on the study of river system simulation theory,the InfoWorks RS system was adopted to build a digital analog model for flood routing in certain river system and the flood discharge was analyzed with the check criterion.[Result] The flood information system based on InfoWorks RS simulated the inundation of downstream during flood discharge and drew mutation pictures to indicate how hydraulic parameters of maximum runoff at each control section,runoff of each control section and flow velocity varied with time,how hydraulic elements mutated with time as well as the most likely inundated area analysis of lower reservoir.[Conclusion] To provide references for reducing serious loss caused by flood and making out preliminary solution to flood control.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technol...CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.展开更多
The function of estuary wetland on hydrological adjustment and flooding control is studied in this paper. It is estimated that the evapotranspiration in the reed field during growth season(June to October) is 722.9 mm...The function of estuary wetland on hydrological adjustment and flooding control is studied in this paper. It is estimated that the evapotranspiration in the reed field during growth season(June to October) is 722.9 mm, which is 37.5% higher than large water body(E 601∶525.9 mm). The water replacement rate in the reed field can reach 95% only when the rains continuously for 11 days and the precipitation reached 912 mm. For the water balance in the paddy field, the total water requirement ranges between 1920 and 1860 mm, among which, 31% is from precipitation, and the left is provided by reservoirs. The water usage efficiency is 0.35 at present productivity. Based on the landscape characteristics and functionalities on flooding control, 5 functional zones are designed for the Liaohe Delta: key protected area; underground storage area; flooding discharge area; flood diversion area in emergency; and flood control drainage area.展开更多
Objective To assess the effects of suction drainage versus nondrainage on the post-operative rehabilitation of patients receiving primary bilateral total knee arthroplasties(TKA).Methods A prospective study including ...Objective To assess the effects of suction drainage versus nondrainage on the post-operative rehabilitation of patients receiving primary bilateral total knee arthroplasties(TKA).Methods A prospective study including 40 patients was conducted.These patients were diagnosed with osteoarthritis and underwent primary bilateral TKA between October 2007 and September 2009 with the same operation team.A suction drainage was placed by randomization in only one knee for each patient,while the other knee as self-control.Pain visual analogue scale score,extremity swelling,wound healing,range of motion and incidence of early post-operative complications between the drained and nondrained group were compared statistically.Results Each patient was followed up for 12 months.Placing drainage did not relieve the pain,extremity swelling,ecchymosis,or reduce the incidence of early complications(all P>0.05).Conclusions Suction drainage in TKA does not exhibit substantial advantages in promoting post-operative rehabilitation after unsophisticated TKA,compared with nondrainage.On the other hand,it might complicate the surgical operation,and increase the incidence of post-operative hemorrhage and retrograde infection.Thus we do not recommend suction drainage in unsophisticated TKA.展开更多
Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood dis...Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood discharge and the maximum high summer temperature. The research results indicate that the flood magnitudes increased during the transition from the medieval warm interval into the early Little Ice Age. Fluctuating climate changes of the Little Ice Age characterized by arid climate events followed by the humid and cold climate conditions give rise to the frequent flood hazards. Low-lying terrain made the study region prone to the flood hazards, storm tide and typhoon. MK analysis reveals that the jumping point of the time series of the flood discharge changes occurred in the mid-1960s, that of the maximum summer temperature changes in the mid-1990s, and the exact jump point in 1993. The flood discharge changes are on negative trend before the 1990s, they are on positive tendency after the 1990s; the maximum high summer temperature changes are on negative trend before the 1990s and on positive tendency after the 1990s. These results indicate that the trend of flood discharge matches that of the maximum high summer temperature in the Yangtze Delta. The occurrence probability of the maximum high summer temperature will be increasing under the climatic warming scenario and which will in turn increase the occurrence probability of the flood events. More active solar action epochs and the higher sea surface temperature index (SST index) of the south Pacific Ocean area lying between 4 o N-4 o S and 150 o W-90 o W correspond to increased annual precipitation, flood discharge and occurrence frequency of floods in the Yangtze Delta. This is partly because the intensified solar activities and the higher SST index give rise to accelerated hydrological circulation from ocean surface to the continent, resulting in increased precipitation on the continent.展开更多
Tunnel seepage is an important factor affecting the progress and safety of tunnel construction. In this paper, the mining method tunnel construction in the water-rich weathered granite stratum is taken as the research...Tunnel seepage is an important factor affecting the progress and safety of tunnel construction. In this paper, the mining method tunnel construction in the water-rich weathered granite stratum is taken as the research object. Through the analytical calculation method, the distribution law of tunnel seepage field under different waterproof and drainage types is studied, and the comparative analysis is carried out. According to the analytical solution, the influencing factors of grouting parameters are proposed. The sensitivity of the tunnel seepage field to the variation of grouting parameters is analyzed. A novel waterproof and drainage system, and construction technology suitable for subway tunnels with large buried depth below groundwater level were proposed.展开更多
Contract Net Protocol (CNP) has been widely used in solving the problems of multi-Agent cooperates and reservoir flood control optimization dispatch. This paper designs an Agent functional module based on the multi-Ag...Contract Net Protocol (CNP) has been widely used in solving the problems of multi-Agent cooperates and reservoir flood control optimization dispatch. This paper designs an Agent functional module based on the multi-Agent coordinated the construction of reservoir flood control optimization dispatch and the corresponding Agent to solve the problem of classical CNP in the Agent communication aspect, to enhance the efficiency of reservoir optimization dispatch and to improve the insufficiency of the classical CNP in the application of reservoir flood control dispatcher. Then, the capacity factor and the cooperation level are introduced in the module. Experiments are conducted on the Agentbuilder simulation platform to simulate reservoir flood control optimization dispatching with the improved CNP. The simulation results show the communication interactive efficiency and the performance of new protocol is superior to those of the classical CNP.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control...Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.展开更多
文摘On the basis of water-balance equation in Dongting Lake and Xiang Zi Yuan-Li River drainage areas, a possib1e flood height relating to the rainfall precipitation in these areas has been inferred. According to the flood simulation, some synthetic maintenance strategies to prevent future catastrophic f1oods in Dongting Lake drainage area have been also presented.
基金supported by the National High Technology Research and Development Program of China (863)(grant no.2007AA06Z220)Important Project of the Ministry of Education(grant no.307014)the Huainan Mining Group program
文摘Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.
基金supported by the National Natural Science Foundation of China (Grant No. 50839002)the National Key Technologies R&D Program of China during the Eleventh Five-Year Plan Period (Grant No.2006BAD11B06)the Jiangsu Province Graduate Cultivation Innovative Project (Grant No.CXZZ11_0453)
文摘While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitrogen and phosphorus of a flooded paddy water system after fertilizer application and at each growth stage so as to obtain the optimal drainage time at each growth stage. Four treatments with different water level management methods at each growth stage were conducted under the condition of ten-day continuous flooding. Results show that the ammonia nitrogen ( NH4-N ) concentration reached the peak value once the fertilizer was applied, and then decreased to a relatively low level seven to ten days later, and that the nitrate nitrogen (NO^-N) concentration gradually rose to its peak value, which appeared later in subsurface water than in surface water. Continuous flooding could effectively reduce the concentrations of NH^-N , NO3-N, and total phosphorus (TP) in surface water. However, the paddy water disturbance, in the process of soil surface adsorption and nitrification, caused NH]-N to be released and increased the concentrations of NH4-N and NO^-N in surface water. A multi-objective controlled drainage model based on environmental factors was established in order to obtain the optimal drainage time at each growth stage and better guide the drainage practices of farmers. The optimal times for surface drainage are the fourth, sixth, fifth, and sixth days after flooding at the tillering, jointing-booting, heading-flowering, and milking stages, respectively.
基金supported by the National Natural Science Foundation of China(Grants No.42001025 and 42001014)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2021491211)the Natural Science Foundation of Ningbo Municipality(Grant No.2023J133).
文摘Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.
基金supported by the National Natural Science Foundation of China(Grant No.51409124)the Natural Science Foundation of Jiangsu Province(Grant No.BK20140564)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2013490711)
文摘Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference.
文摘Increased variability in rainfall events and high production input costs are driving agricultural producers to consider subsurface water management in the flat Red River of the North Valley in Eastern North Dakota and Northwestern Minnesota, USA. Subsurface tile incorporated with water table control structures was utilized from 2009 to 2011 to investigate the response of hard red spring wheat (HRSW) (Triticum aestivum L. emend. Thell.) for yield, disease, and other agronomic characteristics to soil water management. A factorial arrangement of four cultivars, two seed treatments, and two foliar fungicide treatments in a split-plot design with closed and open tile as whole-plots was used. Mean wheat yields averaged across years were not significantly different with closed or open tile treatments. There existed an optimum management practice where plant useable water was not freely drained and analyzing the data with the optimum water management for each year found the optimum water table managed treatment yielded higher with 3812 kg ha-1 compared with limited water table management with 3679 kg ha-1. In 2011, the cultivars Faller and Howard were taller, and Traverse had lower root disease severity. In 2010 and 2011, Howard and Traverse had more leaf disease with open tile compared with closed tile. Across years, there was no difference in root disease, stand, number of spikes, crop height, or yield response to appli-cation of seed treatments with open or closed tile. In 2010, there was a 3.7% yield advantage with application of seed treatment on open tile. Across years, there was no yield response to application of foliar fungicides;however, wheat yield with foliar fungicide was 5% higher than without application in 2010. Producers should be using water table control and disease management to maximize HRSW yield. Further research should investigate water table management throughout the season based on weather conditions.
文摘The iron ore minerals reservoir of Golgohar Mine#3 is more than 660 million tons.It is the biggest in Iran and rate of ore extraction is more than 15 million tons per year.The pit takes place on the way of runoff pathway of this watershed and it needs an especial strategy for conserving the pit mine during next imminent floods.The area of Mine# 3 watershed is 20785700 square meters and its general slope in its topography map is 0.59 percent;then initial scheming indicates it can causes a great deal of problems for mining operation n the next floods;particularly,the pit is located into degree 4th sub branch of a main ephemeral river.For this purpose,the Soil Conservation Service Curve Number(SCS)method was employed to estimate intervals period of next floods based on the magnitude,the intensity and the duration of precipitation events data.Conceptual design of runoff drainage of the watershed was designed to lead the flood to a better pathway location.The Mine#3 overburden deposition occupies a huge area on the watershed;and it has been considered and redesigned in terms of size,form,dimensions and location to manage as a physical obstacle against next floods.Hydraulic calculations were applied for designing two essential open channels which can preserve the pit.
文摘Commercial coal production in the southern region of Brazil (comprising the Paraná, Santa Catarina, and Rio Grande do Sul states) has been occurring since the beginning of the twentieth century. Regarding the Santa Catarina coalfields, about 60% - 65% of the ROM coal is discharged at dump deposits as waste. These wastes can lead to the formation of acid mine drainage (AMD), a source of ground and surface water pollution. One of the technologies used for preventing AMD consists of the alkaline additive method. Thus, the aim of this work was to study, at laboratory scale, the DAM control by blending coal waste with a metallurgical slag. A coal-tailing sample was collected from a coal mine, and the slag was obtained from a semi-integrated steel plant. Static tests were carried out by the acid-base account method to determine the balance between the acid-producing and acid-consuming (neutralizing) mineral components of the samples. Kinetic tests were conducted in humidity cells, following the ASTM D 5744-96 method, for a period of 80 weeks. The results showed that the coal tailing generates AMD. However, environmental problems can be minimized by mixing the coal waste with the metallurgical slag in 1:1 or 1:1.5 proportions. The kinetic experiments proved that, in this condition, the lixiviation presents a higher pH and a lower concentration of acidity, metals, and sulfate. Finally, it is possible to conclude that the blending slag in coal tailing deposits can be a viable alternative for DAM control in coal mining.
文摘In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not considered in most of the hydrological analysis in floodproofing plan and design. In this paper, a method of evaluating the hydraulic risk is developed by employing risk theory, and the concept can easily be extended to other types of risk analysis. As a result, it is possible not to consider the hydraulic resks when the design hydrologic risk of flood control dam is lger. Otherwise, the hydraulic risks must be noticed. The research is very helpful for the development of the flood control theory used at present.
基金Supported by 948 Project Launched by Ministry of Water Resources(CT200210)~~
文摘[Objective] To discuss the application of simulation technique in preliminary solution of reservoir flood control of.[Method] Based on the study of river system simulation theory,the InfoWorks RS system was adopted to build a digital analog model for flood routing in certain river system and the flood discharge was analyzed with the check criterion.[Result] The flood information system based on InfoWorks RS simulated the inundation of downstream during flood discharge and drew mutation pictures to indicate how hydraulic parameters of maximum runoff at each control section,runoff of each control section and flow velocity varied with time,how hydraulic elements mutated with time as well as the most likely inundated area analysis of lower reservoir.[Conclusion] To provide references for reducing serious loss caused by flood and making out preliminary solution to flood control.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
基金financial support from the National Basic Research Program of China(2015CB251201)the Fundamental Research Funds for the Central Universities(15CX06024A)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294 and IRT1086)
文摘CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.
文摘The function of estuary wetland on hydrological adjustment and flooding control is studied in this paper. It is estimated that the evapotranspiration in the reed field during growth season(June to October) is 722.9 mm, which is 37.5% higher than large water body(E 601∶525.9 mm). The water replacement rate in the reed field can reach 95% only when the rains continuously for 11 days and the precipitation reached 912 mm. For the water balance in the paddy field, the total water requirement ranges between 1920 and 1860 mm, among which, 31% is from precipitation, and the left is provided by reservoirs. The water usage efficiency is 0.35 at present productivity. Based on the landscape characteristics and functionalities on flooding control, 5 functional zones are designed for the Liaohe Delta: key protected area; underground storage area; flooding discharge area; flood diversion area in emergency; and flood control drainage area.
文摘Objective To assess the effects of suction drainage versus nondrainage on the post-operative rehabilitation of patients receiving primary bilateral total knee arthroplasties(TKA).Methods A prospective study including 40 patients was conducted.These patients were diagnosed with osteoarthritis and underwent primary bilateral TKA between October 2007 and September 2009 with the same operation team.A suction drainage was placed by randomization in only one knee for each patient,while the other knee as self-control.Pain visual analogue scale score,extremity swelling,wound healing,range of motion and incidence of early post-operative complications between the drained and nondrained group were compared statistically.Results Each patient was followed up for 12 months.Placing drainage did not relieve the pain,extremity swelling,ecchymosis,or reduce the incidence of early complications(all P>0.05).Conclusions Suction drainage in TKA does not exhibit substantial advantages in promoting post-operative rehabilitation after unsophisticated TKA,compared with nondrainage.On the other hand,it might complicate the surgical operation,and increase the incidence of post-operative hemorrhage and retrograde infection.Thus we do not recommend suction drainage in unsophisticated TKA.
基金Sino-France Cooperation Foundation (PRA E02-07) The key project of CAS+3 种基金No.KZCX3-SW-331 National Natural Science Foundation of China No.40271112 Foundation of Key Laboratory of Flood and Waterlogging and Wet Land Agriculture of Hubei Province
文摘Wide collection on the historic records of the climatic changes and flood events is performed in the Yangtze Delta. Man-Kendall (MK) method is applied to explore the changing trends of the time series of the flood discharge and the maximum high summer temperature. The research results indicate that the flood magnitudes increased during the transition from the medieval warm interval into the early Little Ice Age. Fluctuating climate changes of the Little Ice Age characterized by arid climate events followed by the humid and cold climate conditions give rise to the frequent flood hazards. Low-lying terrain made the study region prone to the flood hazards, storm tide and typhoon. MK analysis reveals that the jumping point of the time series of the flood discharge changes occurred in the mid-1960s, that of the maximum summer temperature changes in the mid-1990s, and the exact jump point in 1993. The flood discharge changes are on negative trend before the 1990s, they are on positive tendency after the 1990s; the maximum high summer temperature changes are on negative trend before the 1990s and on positive tendency after the 1990s. These results indicate that the trend of flood discharge matches that of the maximum high summer temperature in the Yangtze Delta. The occurrence probability of the maximum high summer temperature will be increasing under the climatic warming scenario and which will in turn increase the occurrence probability of the flood events. More active solar action epochs and the higher sea surface temperature index (SST index) of the south Pacific Ocean area lying between 4 o N-4 o S and 150 o W-90 o W correspond to increased annual precipitation, flood discharge and occurrence frequency of floods in the Yangtze Delta. This is partly because the intensified solar activities and the higher SST index give rise to accelerated hydrological circulation from ocean surface to the continent, resulting in increased precipitation on the continent.
文摘Tunnel seepage is an important factor affecting the progress and safety of tunnel construction. In this paper, the mining method tunnel construction in the water-rich weathered granite stratum is taken as the research object. Through the analytical calculation method, the distribution law of tunnel seepage field under different waterproof and drainage types is studied, and the comparative analysis is carried out. According to the analytical solution, the influencing factors of grouting parameters are proposed. The sensitivity of the tunnel seepage field to the variation of grouting parameters is analyzed. A novel waterproof and drainage system, and construction technology suitable for subway tunnels with large buried depth below groundwater level were proposed.
文摘Contract Net Protocol (CNP) has been widely used in solving the problems of multi-Agent cooperates and reservoir flood control optimization dispatch. This paper designs an Agent functional module based on the multi-Agent coordinated the construction of reservoir flood control optimization dispatch and the corresponding Agent to solve the problem of classical CNP in the Agent communication aspect, to enhance the efficiency of reservoir optimization dispatch and to improve the insufficiency of the classical CNP in the application of reservoir flood control dispatcher. Then, the capacity factor and the cooperation level are introduced in the module. Experiments are conducted on the Agentbuilder simulation platform to simulate reservoir flood control optimization dispatching with the improved CNP. The simulation results show the communication interactive efficiency and the performance of new protocol is superior to those of the classical CNP.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Special Project(2016ZX05058-003).
文摘Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.