Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic...Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.展开更多
由于分布式新能源接入的波动性,需要针对孤岛直流微电网配置一定容量的储能设备。为了防止分布式储能单元的过度放电或深度充电,必须保证储能单元充放电过程中荷电状态(state of charge,SOC)均衡。针对该问题,提出了一种考虑通信异常的...由于分布式新能源接入的波动性,需要针对孤岛直流微电网配置一定容量的储能设备。为了防止分布式储能单元的过度放电或深度充电,必须保证储能单元充放电过程中荷电状态(state of charge,SOC)均衡。针对该问题,提出了一种考虑通信异常的储能单元分布式控制策略。针对不同额定容量的储能单元,对传统下垂控制进行改进,利用采样保持器周期性修改下垂系数,直至储能单元SOC均衡。并利用电压和电流信息生成单一的补偿环实现输出电流按额定容量的比例分配和直流母线电压补偿,降低系统通信能力要求。若通信发生故障,通过Dijkstra算法更新拓扑结构矩阵,基于改进后的动态一致性算法获取相邻节点的信息,得到新通信拓扑结构下的信息平均值;并通过频域分析证明系统的稳定性。最后,在RTLAB平台中搭建4种案例模型,验证所提控制策略的有效性。展开更多
文摘Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.
文摘由于分布式新能源接入的波动性,需要针对孤岛直流微电网配置一定容量的储能设备。为了防止分布式储能单元的过度放电或深度充电,必须保证储能单元充放电过程中荷电状态(state of charge,SOC)均衡。针对该问题,提出了一种考虑通信异常的储能单元分布式控制策略。针对不同额定容量的储能单元,对传统下垂控制进行改进,利用采样保持器周期性修改下垂系数,直至储能单元SOC均衡。并利用电压和电流信息生成单一的补偿环实现输出电流按额定容量的比例分配和直流母线电压补偿,降低系统通信能力要求。若通信发生故障,通过Dijkstra算法更新拓扑结构矩阵,基于改进后的动态一致性算法获取相邻节点的信息,得到新通信拓扑结构下的信息平均值;并通过频域分析证明系统的稳定性。最后,在RTLAB平台中搭建4种案例模型,验证所提控制策略的有效性。