Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionizati...Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionization collision probability model.The function had three parameters:the first ionization potential energy,A_(α),and B_(α).A_(α)and B_(α)were related to the molecule symmetry and size.The polarization of molecules could characterize the molecule symmetry.The multi-layer molecular cross-section(MMCS)was proposed to describe the contributions of electrons and molecule radius on different molecule surfaces to collisions.A prediction model of the ionization cross-section was also proposed based on Aα.The molecule parameters were calculated by the Becke3–Lee–Yang–Parr(B3LYP)method and the 6–311G**basis set.We used available data of 30 and 23 gases,respectively,to build the prediction models of reduced Townsend ionization coefficients and ionization cross-sections.The relationships between the molecular parameters Aαand Bαand the ionization cross-section were built up via nonlinear fittings.The determination coefficients R^(2)of Aα,Bα,and the ionization cross-section were 0.877,0.887,and 0.838,respectively.The results showed that the accuracy of models was positively correlated with the molecule symmetry and reduced electric field.This was mainly related to the accuracy of the MMCS model in predicting Aα.The MMCS model needed to be improved to describe the collision direction selectivity caused by the molecule asymmetry.Under a high reduced electric field,that error of Aαhad less influence on the prediction results.However,the prediction results for single atoms with high symmetry were poor.This may be due to the absolute error of the model close to single atoms’reduced Townsend ionization coefficients.The models could provide the basis for gas insulation prediction and discharge calculations,especially for symmetric molecules under a high electric field.展开更多
Accurate prediction of the hydrographs of outburst floods induced by landslide dam overtopping failure is necessary for hazard prevention and mitigation. In this study, flume model tests on the breaching of landslide ...Accurate prediction of the hydrographs of outburst floods induced by landslide dam overtopping failure is necessary for hazard prevention and mitigation. In this study, flume model tests on the breaching of landslide dams were conducted. Unconsolidated soil materials with wide grain size distributions were used to construct the dam. The effects of different upstream inflow discharges and downstream bed soil erosion on the outburst peak discharge were investigated. Experimental results reveal that the whole hydrodynamic process of landslide dam breaching can be divided into three stages as defined by clear inflection points and peak discharges. The larger the inflow discharge, the shorter the time it takes to reach the peak discharge, and the larger the outburst flood peak discharge. The scale of the outburst floods was found to be amplified by the presence of an erodible bed located downstream of the landslide dam. This amplification decreases with the increase of upstream inflow. In addition, the results show that the existence of an erodible bed increases the density of the outburst flow, increasing its probability of transforming from a sediment flow to a debris flow.展开更多
Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The r...Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5-3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.展开更多
By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences o...By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences of the Reynolds and Weber numbers of water flow on the rain intensity of flood discharge atomization were analyzed and a rain intensity conversion relation was established. It is demonstrated that the level of atomization follows the geometric similarity relations and it is possible to ignore the influence of the surface tension of the flow when the Weber number is greater than 500. Despite limitations such as incomplete data sets, it is undoubtedly helpful to study the scale effect of atomization flow, and it is beneficial to identify the rules of the model test results in order to extrapolate to prototype prediction.展开更多
The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing ...The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.展开更多
Flood runoff models of urbanization from farmland based on the physical characteristics of a basin have been minimally used in previous research until today. Consequently, the runoff analysis has not been performed th...Flood runoff models of urbanization from farmland based on the physical characteristics of a basin have been minimally used in previous research until today. Consequently, the runoff analysis has not been performed that is based on physical basis. Therefore, this research undertook flood discharge analysis from urbanization using the unit flood discharge concept that is enhanced the previous research. The study area was selected at the Kurabe River basin, which is 17.5 km2 in area having a very steep landscape. Twenty-one rainfall events at 10-minute intervals were selected, and five urbanized years were tested. From 1976 to 2009 during 35 years, the flood discharge increased approximately 2.0 times, in which residential areas increased from 23% to 48%;the maximum specific discharge was 21.7 m3·s-1·km-2 in a some block, which is a remarkably large amount. Furthermore, following issues investigated: changes in the hydrograph were associated with urbanization, the effect of a small reservoir aiming to cut down the peak discharge and the relationship between the unit discharge, and the relationship between our method and the discharge estimated by a “Rational Formula”. In particular, the effect of the small reservoir for flood control was found to be remarkably efficient. Finally, the validity of our method was confirmed at the study area in the observed discharge. This result is very useful for estimating runoff discharge changes by urbanization from farmland.展开更多
According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by o...According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.展开更多
Atomizing rainfall caused by flood discharge of high dams poses a great threat to the safety of powerhouse and ecological environment.As an indispensable means,numerical calculation is widely used in the safety design...Atomizing rainfall caused by flood discharge of high dams poses a great threat to the safety of powerhouse and ecological environment.As an indispensable means,numerical calculation is widely used in the safety design of discharge structures.The distribution of rainfall intensity is closely related to the trajectory nappe shape,jet trajectory distances,the splashed water droplet diameter and its velocity,and the spatial distribution of downstream nappe wind.In this paper,an experimental result is used to verify the improved stochastic splash mathematical model under different bucket types and discharge conditions,and the sensitivity of downstream rainfall intensity distribution to the shape of trajectory nappe,discharge flow,spatial distribution of downstream nappe wind,and the corresponding relationship between the droplet diameter and its splashing velocity is analyzed.The results show that the calculation accuracy of downstream rainfall intensity distribution is significantly improved when the above factors are taken into consideration.It is found that the bucket type and flood discharge rate play the greatest role in the rainfall intensity distribution,followed by the downstream nappe wind distribution,and finally the corresponding relationship between the diameter and velocity of splash droplets.Therefore,these factors should be considered comprehensively when the rainfall intensity distribution of flood discharge atomization is calculated.This study can help us to understand the influence factors of flood discharge atomization more deeply and predict the distribution of flood discharge atomization rainfall intensity more accurately.展开更多
On the method of correlation analysis the poper begins with searching theSST (Sea Surface Temperature) and circulation features of some regions with close correlation to the discharge of the flood season (from June to...On the method of correlation analysis the poper begins with searching theSST (Sea Surface Temperature) and circulation features of some regions with close correlation to the discharge of the flood season (from June to September) in the upperreaches of the Changjiang (Yangtze) River, then discusses the characteristics of sea-airinteraction and the relations between the sea-air interaction and the discharge of theflood season,after that analyzes the possible mechanisms through which the main searegions affect atmospheric circulation, and of the influence of the circulation changes onthe discharge of the flood season.展开更多
We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leadin...We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results.展开更多
Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak disch...Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak discharge control by a small reservoir (control reservoir) caused by rapidly developed urbanization. Although work for this purpose was conducted, research on the effects of the control reservoir was not conducted until now. This research, conducted by simulation, was a case study in the Kurabe River Basin in the Tedori River Alluvial Fan Area, Japan, based on the precise investigation of the reservoir in the actual field. The study was conducted to determine not only the actual control reservoir capacity for the newly developed residential area but also the ideal capacity for all present residential areas and the largest capacity allowable for a maximum rainfall event that recently occurred. The control reservoir effects between individual blocks and the entire basin area were compared by dividing the test basin into 15 blocks (sub-basins). The results showed that the effects on the capacity per unit area of the residential area in blocks have close relationship with the decreasing ratio of peak discharge in blocks. Consequently, the effects of control reservoir capacity and the limitation were clarified. In the future, control reservoirs should be constructed for all of the already developed residential areas, for example, by utilizing underground car parking lot. The results of this research can contribute to the design of the control reservoir for protection against flooding damage in urbanized areas.展开更多
Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharg...Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course.展开更多
From the perspective of ecological conservation and satisfaction of people's visual and psychological demands,existing problems in the urban revetment were analyzed,and the connotation of ecological revetment as w...From the perspective of ecological conservation and satisfaction of people's visual and psychological demands,existing problems in the urban revetment were analyzed,and the connotation of ecological revetment as well as the selection of different ecological revetments according to different types of river ways was discussed.展开更多
Based on experimental data and theory, by means of simplified discharge durations in a small flume, the influence of discharge process on channel morphology and channel pattern was analyzed in this paper. It was concl...Based on experimental data and theory, by means of simplified discharge durations in a small flume, the influence of discharge process on channel morphology and channel pattern was analyzed in this paper. It was concluded that on the same original channel, different discharge and channel conditions would end with different river morphology, including thalwegs and radius of bends. Different discharge process resulted in two kinds of change: tiny change in the process of "big-small-big" and distinct change in the process of "small-big-small". Flood discharge duration was verified to be the main cause in the discharge process. Proper discharge process will change the morphologies of river, even can led to channel pattern transformation. The influences based on the relationship between the flow and the channel itself, including slope and riverbed constitution. Although not be a main cause, original channel morphology may influence its final channel pattern. Neglecting the influence of channel itself will hamper the understanding of channel patterns.展开更多
基金supported by National Natural Science Foundation of China(No.U1966211)National Key R&D Program of China(No.2021YFB2401400)。
文摘Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionization collision probability model.The function had three parameters:the first ionization potential energy,A_(α),and B_(α).A_(α)and B_(α)were related to the molecule symmetry and size.The polarization of molecules could characterize the molecule symmetry.The multi-layer molecular cross-section(MMCS)was proposed to describe the contributions of electrons and molecule radius on different molecule surfaces to collisions.A prediction model of the ionization cross-section was also proposed based on Aα.The molecule parameters were calculated by the Becke3–Lee–Yang–Parr(B3LYP)method and the 6–311G**basis set.We used available data of 30 and 23 gases,respectively,to build the prediction models of reduced Townsend ionization coefficients and ionization cross-sections.The relationships between the molecular parameters Aαand Bαand the ionization cross-section were built up via nonlinear fittings.The determination coefficients R^(2)of Aα,Bα,and the ionization cross-section were 0.877,0.887,and 0.838,respectively.The results showed that the accuracy of models was positively correlated with the molecule symmetry and reduced electric field.This was mainly related to the accuracy of the MMCS model in predicting Aα.The MMCS model needed to be improved to describe the collision direction selectivity caused by the molecule asymmetry.Under a high reduced electric field,that error of Aαhad less influence on the prediction results.However,the prediction results for single atoms with high symmetry were poor.This may be due to the absolute error of the model close to single atoms’reduced Townsend ionization coefficients.The models could provide the basis for gas insulation prediction and discharge calculations,especially for symmetric molecules under a high electric field.
基金the financial support from the National Natural Science Foundation of China (Grant No. 41731283)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (Grant No. QYZDB-SSW-DQC010)the Youth Innovation Promotion Association, Chinese Academy of Sciences (CAS)
文摘Accurate prediction of the hydrographs of outburst floods induced by landslide dam overtopping failure is necessary for hazard prevention and mitigation. In this study, flume model tests on the breaching of landslide dams were conducted. Unconsolidated soil materials with wide grain size distributions were used to construct the dam. The effects of different upstream inflow discharges and downstream bed soil erosion on the outburst peak discharge were investigated. Experimental results reveal that the whole hydrodynamic process of landslide dam breaching can be divided into three stages as defined by clear inflection points and peak discharges. The larger the inflow discharge, the shorter the time it takes to reach the peak discharge, and the larger the outburst flood peak discharge. The scale of the outburst floods was found to be amplified by the presence of an erodible bed located downstream of the landslide dam. This amplification decreases with the increase of upstream inflow. In addition, the results show that the existence of an erodible bed increases the density of the outburst flow, increasing its probability of transforming from a sediment flow to a debris flow.
基金supported by the National Natural Science Foundation of China(Grants No.51479124 and 51109143)the Open Cooperation Fund of State Key Laboratory of Hydraulics and Mountain River Engineering(Grant No.SKHL1422)the Nanjing Hydraulic Research Institute Foundation(Grant No.Y115006)
文摘Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5-3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.
基金supported by the National Natural Science Foundation of China (Grant No 50579084)the Foundation of the Nanjing Hydraulic Research Institute (Grant No Y10705)
文摘By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences of the Reynolds and Weber numbers of water flow on the rain intensity of flood discharge atomization were analyzed and a rain intensity conversion relation was established. It is demonstrated that the level of atomization follows the geometric similarity relations and it is possible to ignore the influence of the surface tension of the flow when the Weber number is greater than 500. Despite limitations such as incomplete data sets, it is undoubtedly helpful to study the scale effect of atomization flow, and it is beneficial to identify the rules of the model test results in order to extrapolate to prototype prediction.
基金the National Natural Science Foundation of China(Grants No.42041006,41790443 and 41927806).
文摘The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.
文摘Flood runoff models of urbanization from farmland based on the physical characteristics of a basin have been minimally used in previous research until today. Consequently, the runoff analysis has not been performed that is based on physical basis. Therefore, this research undertook flood discharge analysis from urbanization using the unit flood discharge concept that is enhanced the previous research. The study area was selected at the Kurabe River basin, which is 17.5 km2 in area having a very steep landscape. Twenty-one rainfall events at 10-minute intervals were selected, and five urbanized years were tested. From 1976 to 2009 during 35 years, the flood discharge increased approximately 2.0 times, in which residential areas increased from 23% to 48%;the maximum specific discharge was 21.7 m3·s-1·km-2 in a some block, which is a remarkably large amount. Furthermore, following issues investigated: changes in the hydrograph were associated with urbanization, the effect of a small reservoir aiming to cut down the peak discharge and the relationship between the unit discharge, and the relationship between our method and the discharge estimated by a “Rational Formula”. In particular, the effect of the small reservoir for flood control was found to be remarkably efficient. Finally, the validity of our method was confirmed at the study area in the observed discharge. This result is very useful for estimating runoff discharge changes by urbanization from farmland.
基金National Key R&D Program of China under Grant No.2016YFC0401705Science Fund for Creative Research Groups of the National Natural Science Foundation of China Grant No.51621092+3 种基金the National Natural Science Foundation of China Grant No.51579173,No.51379140,No.51309177 and No.51509180the Fund for Key Research Area Innovation Groups of China Ministry of Science and Technology Grant No.2014RA4031the Program of Introducing Talents of Discipline to Universities Grant No.B14012the Tianjin Innovation Team Foundation of Key Research Areas Grant No.2014TDA001
文摘According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1765202,U20A20316,515779167)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province of China(Grant No.E2020402074)。
文摘Atomizing rainfall caused by flood discharge of high dams poses a great threat to the safety of powerhouse and ecological environment.As an indispensable means,numerical calculation is widely used in the safety design of discharge structures.The distribution of rainfall intensity is closely related to the trajectory nappe shape,jet trajectory distances,the splashed water droplet diameter and its velocity,and the spatial distribution of downstream nappe wind.In this paper,an experimental result is used to verify the improved stochastic splash mathematical model under different bucket types and discharge conditions,and the sensitivity of downstream rainfall intensity distribution to the shape of trajectory nappe,discharge flow,spatial distribution of downstream nappe wind,and the corresponding relationship between the droplet diameter and its splashing velocity is analyzed.The results show that the calculation accuracy of downstream rainfall intensity distribution is significantly improved when the above factors are taken into consideration.It is found that the bucket type and flood discharge rate play the greatest role in the rainfall intensity distribution,followed by the downstream nappe wind distribution,and finally the corresponding relationship between the diameter and velocity of splash droplets.Therefore,these factors should be considered comprehensively when the rainfall intensity distribution of flood discharge atomization is calculated.This study can help us to understand the influence factors of flood discharge atomization more deeply and predict the distribution of flood discharge atomization rainfall intensity more accurately.
文摘On the method of correlation analysis the poper begins with searching theSST (Sea Surface Temperature) and circulation features of some regions with close correlation to the discharge of the flood season (from June to September) in the upperreaches of the Changjiang (Yangtze) River, then discusses the characteristics of sea-airinteraction and the relations between the sea-air interaction and the discharge of theflood season,after that analyzes the possible mechanisms through which the main searegions affect atmospheric circulation, and of the influence of the circulation changes onthe discharge of the flood season.
文摘We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results.
文摘Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak discharge control by a small reservoir (control reservoir) caused by rapidly developed urbanization. Although work for this purpose was conducted, research on the effects of the control reservoir was not conducted until now. This research, conducted by simulation, was a case study in the Kurabe River Basin in the Tedori River Alluvial Fan Area, Japan, based on the precise investigation of the reservoir in the actual field. The study was conducted to determine not only the actual control reservoir capacity for the newly developed residential area but also the ideal capacity for all present residential areas and the largest capacity allowable for a maximum rainfall event that recently occurred. The control reservoir effects between individual blocks and the entire basin area were compared by dividing the test basin into 15 blocks (sub-basins). The results showed that the effects on the capacity per unit area of the residential area in blocks have close relationship with the decreasing ratio of peak discharge in blocks. Consequently, the effects of control reservoir capacity and the limitation were clarified. In the future, control reservoirs should be constructed for all of the already developed residential areas, for example, by utilizing underground car parking lot. The results of this research can contribute to the design of the control reservoir for protection against flooding damage in urbanized areas.
文摘Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course.
文摘From the perspective of ecological conservation and satisfaction of people's visual and psychological demands,existing problems in the urban revetment were analyzed,and the connotation of ecological revetment as well as the selection of different ecological revetments according to different types of river ways was discussed.
文摘Based on experimental data and theory, by means of simplified discharge durations in a small flume, the influence of discharge process on channel morphology and channel pattern was analyzed in this paper. It was concluded that on the same original channel, different discharge and channel conditions would end with different river morphology, including thalwegs and radius of bends. Different discharge process resulted in two kinds of change: tiny change in the process of "big-small-big" and distinct change in the process of "small-big-small". Flood discharge duration was verified to be the main cause in the discharge process. Proper discharge process will change the morphologies of river, even can led to channel pattern transformation. The influences based on the relationship between the flow and the channel itself, including slope and riverbed constitution. Although not be a main cause, original channel morphology may influence its final channel pattern. Neglecting the influence of channel itself will hamper the understanding of channel patterns.