A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical mode...The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.展开更多
Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the case...Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the cases of flood prevention. In the view of geological environmental analyses of flood formation and from the synthesis of experiences gained in flood control in the past hundreds of years, sluggish draining of flood, silt sedimentation in channel and building levee blindly constitute the main cause of intractable flood for a long time in the middle reach of the Yangtze River. Draining away silt and water is the only way to stamping out flood disaster. Opening up artificial waterways for flood diversion, draining away the silt of channel into the polders, and storing the flood water are important engineering measures for the flood control and damage reduction.展开更多
A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been...A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
基金supported by the National Key Technologies Research and Development Program (Grant No. 2006BAB05B02)
文摘The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.
基金The research is supported by the National Natural Science F ounda-tion of China( No.49972 0 5 7) and the China Geological Surv
文摘Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the cases of flood prevention. In the view of geological environmental analyses of flood formation and from the synthesis of experiences gained in flood control in the past hundreds of years, sluggish draining of flood, silt sedimentation in channel and building levee blindly constitute the main cause of intractable flood for a long time in the middle reach of the Yangtze River. Draining away silt and water is the only way to stamping out flood disaster. Opening up artificial waterways for flood diversion, draining away the silt of channel into the polders, and storing the flood water are important engineering measures for the flood control and damage reduction.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201006037,GYHY200906007,and GYHY(QX)2007-6-1)National Natural Science Foundation of China (41105068)
文摘A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.