The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon se...The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain.展开更多
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig...Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.展开更多
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ...The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.展开更多
High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in...High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film (FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing (DAS) under DI, and was mainly centered in the 0-30 cm soil layer and at distances of 30-70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0-30 cm and at distances of 30-70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity (EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduction in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity.展开更多
To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability ...To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability were investigated.Compared with intermittent irrigation and flooded irrigation,the soil temperature with saturated irrigation remained low throughout the day,and the decrease rate of the bleeding rate of hills was the lowest.These results suggested that the saturated irrigation maintained root activity.For the three irrigation types,the number of spikelets per m2 and 1000-grain weight were similar,however,saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains.The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain,furthermore,the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low.Thus,under high-temperature ripening conditions,soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time.The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage.展开更多
The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oa...The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oasis within this arid area, which is located in the Alxa area west of the Helan Mountains and next to the Tengger desert in the east. It has contributed greatly to the local stock raising and agriculture since its development in 1970. However, the groundwater which the oasis depends on to survive has been getting salinized gradually and more serious in recent years.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201203012)the National Natural Science Foundation of China(41373084,41330528,41203054)
文摘The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain.
基金financially supported by the National Natural Science Foundation of China (51741908)
文摘Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.
基金the National Key Research and Development Program of China(2017YFD0300203 and 2016YFD0300105)。
文摘The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.
基金funded by the National Natural Science Foundation of China (31000252, 31201681)the Science and Technology Supporting Project of the Department of Science and Technology of Xinjiang, China (200840102-08)
文摘High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film (FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing (DAS) under DI, and was mainly centered in the 0-30 cm soil layer and at distances of 30-70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0-30 cm and at distances of 30-70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity (EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduction in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity.
基金supported by the grants from the Project of the National Agriculture and Food Research Organization Bio-oriented Technology Research Advancement Institution in Japan(the Special Scheme to Create Dynamism in Agriculture,Forestry and Fisheries through Deploying Highly Advanced Technology)(Grant No.shoNavi1000)。
文摘To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability were investigated.Compared with intermittent irrigation and flooded irrigation,the soil temperature with saturated irrigation remained low throughout the day,and the decrease rate of the bleeding rate of hills was the lowest.These results suggested that the saturated irrigation maintained root activity.For the three irrigation types,the number of spikelets per m2 and 1000-grain weight were similar,however,saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains.The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain,furthermore,the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low.Thus,under high-temperature ripening conditions,soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time.The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage.
基金The study was supported by the cooperation project of China and Britain “Yaoba oasis environment controlof saline intrusion”(ODA TC,1994-1996).
文摘The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oasis within this arid area, which is located in the Alxa area west of the Helan Mountains and next to the Tengger desert in the east. It has contributed greatly to the local stock raising and agriculture since its development in 1970. However, the groundwater which the oasis depends on to survive has been getting salinized gradually and more serious in recent years.