[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010...[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010, the interannual and interdecadal variation characteristics of rainstorm in the flood season in recent 60 years were analyzed by using the linear regression analysis, correlation analysis, wavelet analysis and so on. Moreover, the relationship between the rainstorm in the flood season and annual average temperature was analyzed. [Result] In recent 60 years, the rainstorm amount and days in the flood season in Guangzhou respectively increased with 6.23 mm/10 a and 0.27 d/10 a linear trends. The most rainstorm days (rainfall) was in 2001 and was 15 d (1 085.7 mm). There was no rainstorm in the least year (1990). The interannual variations of rainstorm amount and days in the flood season in Guangzhou obviously increased in recent 20 years. The decadal and interannual variations of rainstorm in the prior and latter flood seasons had the difference. The trend in the prior flood season increased and in the latter flood season slightly decreased. The positive correlation between the rainstorm days and the annual average temperature in the flood season in Guangzhou was significant, and the relative coefficient was 0.22, which passed α=0.02 significance level test. The total rainstorm days in the prior flood season in Guangzhou City mainly had 4.2-year interannual and 52.9-year interdecadal periodic variations. The total rainstorm days in the latter flood season mainly had 5.5-year interannual and 18.4-year interdecadal periodic variations. [Conclusion] The research provided the scientific basis for the precipitation forecast in the flood season.展开更多
Based on daily precipitation data at 35 meteorological observation stations during the flood season in Shandong Province from 1961 to2012,the spatial and temporal variation characteristics of number of rainstorm days ...Based on daily precipitation data at 35 meteorological observation stations during the flood season in Shandong Province from 1961 to2012,the spatial and temporal variation characteristics of number of rainstorm days and rainstorm intensity were analyzed by conventional statistical methods. The results show that the number of rainstorm days and rainstorm intensity during the flood season in Shandong showed a decreasing trend from 1961 to 2012,but the decreases were not statistically significant at the 0. 05 level. Annual average number of rainstorm days during the flood season in Shandong over the past 52 years was 2.2d and had the changing periods of 3. 4 and quasi-8 a; the annual average rainstorm intensity was 67. 8 mm/d and had the changing periods of 2. 3,3. 3,6. 9 and quasi-12. 0 a. From 1961 to 2012,there was no abrupt climatic change in the number of rainstorm days and rainstorm intensity during the flood season in Shandong,and the number of rainstorm days and rainstorm intensity during the flood season in Shandong reduced from the middle and late 1970 s to the late 1980 s. The annual average number of rainstorm days and rainstorm intensity during the flood season in Shandong from 1961 to 2012 rose gradually from the northwest to the southeast. Rainstorm( continuous rainstorm) during the flood season appeared frequently,and rainstorm intensity was high in the south of Shandong Province,the south and east of Shandong Peninsula.展开更多
[Objective] The paper was to analyze lizi synoptic meteorology of 13 rain- storm processes during the flood season of Hunan Province in 2010. [Method] Using the principle of lizi synoptic meteorology, 13 regional rain...[Objective] The paper was to analyze lizi synoptic meteorology of 13 rain- storm processes during the flood season of Hunan Province in 2010. [Method] Using the principle of lizi synoptic meteorology, 13 regional rainstorm weather processes occurred in Hunan Province in 2010 were analyzed. [Result] Thirteen rainstorms are all closely related to self-organization convergent airflow, rainstorm is the inevitable result after the outbreak of self-organization convergent airflow. The inoculation area of self-organization convergent airflow is accorded with the occurrence area of rain- storm in the next 12-36 h; once the inoculation area of self-organization convergent airflow disappears, there will be no regional rainstorm in the next 12-36 h; the inoc- ulation area of self-organization convergent airflow is produced in the convergence domain of large scale of southern and northern lizi pair. [Conclusion] The existence of southern and northern lizi pair can be used as the short-term forecast model of regional rainstorm during flood season.展开更多
文摘[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010, the interannual and interdecadal variation characteristics of rainstorm in the flood season in recent 60 years were analyzed by using the linear regression analysis, correlation analysis, wavelet analysis and so on. Moreover, the relationship between the rainstorm in the flood season and annual average temperature was analyzed. [Result] In recent 60 years, the rainstorm amount and days in the flood season in Guangzhou respectively increased with 6.23 mm/10 a and 0.27 d/10 a linear trends. The most rainstorm days (rainfall) was in 2001 and was 15 d (1 085.7 mm). There was no rainstorm in the least year (1990). The interannual variations of rainstorm amount and days in the flood season in Guangzhou obviously increased in recent 20 years. The decadal and interannual variations of rainstorm in the prior and latter flood seasons had the difference. The trend in the prior flood season increased and in the latter flood season slightly decreased. The positive correlation between the rainstorm days and the annual average temperature in the flood season in Guangzhou was significant, and the relative coefficient was 0.22, which passed α=0.02 significance level test. The total rainstorm days in the prior flood season in Guangzhou City mainly had 4.2-year interannual and 52.9-year interdecadal periodic variations. The total rainstorm days in the latter flood season mainly had 5.5-year interannual and 18.4-year interdecadal periodic variations. [Conclusion] The research provided the scientific basis for the precipitation forecast in the flood season.
基金Supported by Project for Research of Meteorological Science and Technology of Shandong Meteorological Bureau(2016sdqxz05,2012-sdqxz01)
文摘Based on daily precipitation data at 35 meteorological observation stations during the flood season in Shandong Province from 1961 to2012,the spatial and temporal variation characteristics of number of rainstorm days and rainstorm intensity were analyzed by conventional statistical methods. The results show that the number of rainstorm days and rainstorm intensity during the flood season in Shandong showed a decreasing trend from 1961 to 2012,but the decreases were not statistically significant at the 0. 05 level. Annual average number of rainstorm days during the flood season in Shandong over the past 52 years was 2.2d and had the changing periods of 3. 4 and quasi-8 a; the annual average rainstorm intensity was 67. 8 mm/d and had the changing periods of 2. 3,3. 3,6. 9 and quasi-12. 0 a. From 1961 to 2012,there was no abrupt climatic change in the number of rainstorm days and rainstorm intensity during the flood season in Shandong,and the number of rainstorm days and rainstorm intensity during the flood season in Shandong reduced from the middle and late 1970 s to the late 1980 s. The annual average number of rainstorm days and rainstorm intensity during the flood season in Shandong from 1961 to 2012 rose gradually from the northwest to the southeast. Rainstorm( continuous rainstorm) during the flood season appeared frequently,and rainstorm intensity was high in the south of Shandong Province,the south and east of Shandong Peninsula.
文摘[Objective] The paper was to analyze lizi synoptic meteorology of 13 rain- storm processes during the flood season of Hunan Province in 2010. [Method] Using the principle of lizi synoptic meteorology, 13 regional rainstorm weather processes occurred in Hunan Province in 2010 were analyzed. [Result] Thirteen rainstorms are all closely related to self-organization convergent airflow, rainstorm is the inevitable result after the outbreak of self-organization convergent airflow. The inoculation area of self-organization convergent airflow is accorded with the occurrence area of rain- storm in the next 12-36 h; once the inoculation area of self-organization convergent airflow disappears, there will be no regional rainstorm in the next 12-36 h; the inoc- ulation area of self-organization convergent airflow is produced in the convergence domain of large scale of southern and northern lizi pair. [Conclusion] The existence of southern and northern lizi pair can be used as the short-term forecast model of regional rainstorm during flood season.