Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in...Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.展开更多
This paper presents the results of multi-criteria decision-making (MCDM) approach for flood risk and sediment management in dynamic alluvial fan. The study is based on real problems of Koshi River, Nepal. Criteria wei...This paper presents the results of multi-criteria decision-making (MCDM) approach for flood risk and sediment management in dynamic alluvial fan. The study is based on real problems of Koshi River, Nepal. Criteria weighting for each measure were estimated using Entropy, AHP and AHP-Entropy techniques. Preference ranking of alternatives was prioritized using MCDM methods—ELECTRE, TOPSIS and SAW. Five alternate measures for flood risk management and eight alternate measures for sediment control with seven evaluation criteria comprising economic, social, environmental and political aspects were taken into account. The Spearman’s rank correlation coefficient between the criteria weighting techniques AHP and AHP-Entropy, Entropy and AHP-Entropy and AHP with Entropy were 0.964, 0.429 and 0.321 respectively. Preference ranks were determined using nine combinations of criteria weighting techniques and preference ranking methods. In the case of flood risk management, using of old Koshi channel was recommended as the highest prioritized solution. Similarly, for sediment control, reduction of upstream sediment supply was recommended as the top prioritized measures. The Euclidean distance test for each pairs of criteria weighting and prioritization methods showed all three MCDM methods of preference ranking were sensitive to weighting. On implementation of the recommended measures, local people of Sunsari, Saptari and Morang districts of Nepal will be highly benefited.展开更多
The Sediment Delivery Ratio(SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrolog...The Sediment Delivery Ratio(SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrological regime and watershed properties, may influence the SDR at interannual timescales. However, the effect of certain important dynamic factors, such as rainfall peak distribution, runoff erosion power and sediment bulk density, on the sediment delivery ratio of single flood events(SDRe) has received little attention. The Qiaogou headwater basin is in the hilly-gully region of the Chinese Loess Plateau, and it encompasses a 0.45 km^2 catchment. Three large-scale field runoff plots at different geomorphological positions were chosen to obtain the observation data, and the 20-year period between 1986 and 2005 is presented. The results showed that the SDRe of the Qiaogou headwaters varied from 0.49 to 2.77. Among the numerous influential factors, rainfall and runoff were the driving factors causing slope erosion and sediment transport. The rainfall erosivity had a significant positive relationship with the sediment transport modulus(R^2=0.85, P<0.01) but had no significant relationship with SDRe. The rainfall peak coefficient was significantly positively correlated with the SDRe(R^2=0.64, P<0.05), indicating the influence of rainfall energy distribution on the SDRe. The runoff erosion power index was not only significantly related to the sediment transport modulus(R^2=0.84, P<0.01) but also significantly related to the SDRe(R^2=0.57, P<0.01). In addition, the relative bulk density was significantly related to the SDRe, indicating that hyper-concentrated flow characteristics contributed to more transported sediment in the catchment. Thus, the rainfall peak coefficient, runoff erosion power and sediment relative bulk density could be used as dynamic indexes to predict the SDRe in the hilly areas of the Chinese Loess Plateau.展开更多
This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectr...This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).展开更多
A physical modeling case study on flood and sediment disaster of waterpower stations in mountain rivers was conducted.Field observations and laboratory experiments show that the reasons induced disasters of Boluo Wate...A physical modeling case study on flood and sediment disaster of waterpower stations in mountain rivers was conducted.Field observations and laboratory experiments show that the reasons induced disasters of Boluo Waterpower Station are those main characteristics of mountain rivers in South-Western China.High speed flows with velocities between 10 to 20 m/s are provided with strong sediment canting capacity in flood season.Steep banks with thick loose surfaces are rich in sediment supply by landslides and...展开更多
Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mou...Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.展开更多
The Late Quaternary thick sedimentary fills of the Ganga basin predominantly consist of unconsolidated fluvial sandy deposits which are often intercalated with mud. These deposits at various places record the evidence...The Late Quaternary thick sedimentary fills of the Ganga basin predominantly consist of unconsolidated fluvial sandy deposits which are often intercalated with mud. These deposits at various places record the evidence of earthquakes, which occurred in the recent geological past. The evidence is contained and manifested in the form of Soft Sediment Deformation Structures (SSDSs). Saturated sediments/muds/soils are liquefied by earthquake tremors which either generate SSDS or produce structural discordance in the pre-existing sedimentary structures. The present study reports the occurrence of SSDS, e.g. load and associated flame structures, clastic dikes and sill structures, slump structures and sedimentary breccias, etc. from the Ganga River and adjacent oxbow lake sediment deposits. An attempt has been made to establish the origin of soft sediment structures of this region in accordance with its neotectonic history and in turn, identification of seismic structural proxies to delineate paleoseismic events in this region with futuristic implications. The preservation of soft sediment deformation structures in large numbers with multiple geomorphology and scale, in the river and adjoining lake sediments, is indicative of frequent earthquakes of high magnitude consequent to tectonic activism in the Himalayan region.展开更多
Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silte...Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silted with infertile materials considered unfit for crop production. A study was conducted to explain why the flood phenomenon occurred, to determine the physico-chemical properties of the sediments silted in the Kelantan Plains and to propose measures for soil mitigation. Results showed that the silted sediments were characterized by the presence of quarts, mica, feldspars, kaolinite, gibbsite and hematite believed to come from the top- and subsoil of the upland areas. The sediments’ pH was very low and Al and/or Fe contents were very high, while nitrogen and carbon contents varied from area to area. Soils in the Kelantan Plains badly affected by this great flood needed to undergo proper ameliorative program. The most appropriate measure would be to apply ground magnesium limestone in combination with bio-fertilizer fortified with beneficial microbes that would increase their pH to a level above 5, which consequently eliminates Al<sup>3+</sup> and/or Fe<sup>2+</sup> that causes toxicity to the crops growing on them. The organic material so added would enhance the formation of soil structures. It is advised that the farming communities in the upper reaches of the Kelantan River would have to follow the advice advocated by the Department of Agriculture, Peninsular Malaysia, via MyGAP initiative, in order to sustain agricultural production on their land.展开更多
This study aims to show the impact of successive floods on the spatial variation of the physico-chemical properties of sediments along the Bandama River in the localities of Sinématiali and Niakaramadougou becaus...This study aims to show the impact of successive floods on the spatial variation of the physico-chemical properties of sediments along the Bandama River in the localities of Sinématiali and Niakaramadougou because of their importance in the functioning of this ecosystem. Several samples were taken from both stations based on flood recurrence areas. The particle size analysis was done using the Robinson’s Pipette method. Traditional methods of sediment analysis have been used to measure organic carbon (O.C.), nitrogen (N), and other chemical properties including pH, organic matter (MO), and C/N ratio. Statistical analyzes were carried out to assess the differences between the physico-chemical parameters of the different sampling zones. In the area of niakamadougou, the lower values in MO were recorded in areas subject to more frequent flooding, thus close to the watercourse. In the Sinématiali area, lower M.O. values were recorded in sediments far from the stream. Total organic matter levels are higher in surface sediments with the lowest proportions of clay. The results show that the physico-chemical properties of the sediments vary at the level of the vertical distribution and according to their spatial distribution. Successive floods have a direct effect on the dynamics of the physico-chemical properties of sediments along the shore.展开更多
Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharg...Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course.展开更多
In this preliminary study, it is shown that for a reservoir on a river of rich runoff like the Yangtze of a rich runoff, an elaborate scheme of sediment management may be devised to substantially reduce the reservoir ...In this preliminary study, it is shown that for a reservoir on a river of rich runoff like the Yangtze of a rich runoff, an elaborate scheme of sediment management may be devised to substantially reduce the reservoir deposition. The mathematical model applied in this investigation has been fairly well verified with the long term field data on the sediment transport by an unsteady flow in the lower Yellow River. In view of the importance of TGP, however, a further investigation with physical models and mathematical models of other versions is planned. Great financial benefits are involved.展开更多
基金The National Natural Science Foundation of China under contract Nos 41176069 and 48505350the Major State Basic Research Development Program of China under contract No.2013CB956502
文摘Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.
文摘This paper presents the results of multi-criteria decision-making (MCDM) approach for flood risk and sediment management in dynamic alluvial fan. The study is based on real problems of Koshi River, Nepal. Criteria weighting for each measure were estimated using Entropy, AHP and AHP-Entropy techniques. Preference ranking of alternatives was prioritized using MCDM methods—ELECTRE, TOPSIS and SAW. Five alternate measures for flood risk management and eight alternate measures for sediment control with seven evaluation criteria comprising economic, social, environmental and political aspects were taken into account. The Spearman’s rank correlation coefficient between the criteria weighting techniques AHP and AHP-Entropy, Entropy and AHP-Entropy and AHP with Entropy were 0.964, 0.429 and 0.321 respectively. Preference ranks were determined using nine combinations of criteria weighting techniques and preference ranking methods. In the case of flood risk management, using of old Koshi channel was recommended as the highest prioritized solution. Similarly, for sediment control, reduction of upstream sediment supply was recommended as the top prioritized measures. The Euclidean distance test for each pairs of criteria weighting and prioritization methods showed all three MCDM methods of preference ranking were sensitive to weighting. On implementation of the recommended measures, local people of Sunsari, Saptari and Morang districts of Nepal will be highly benefited.
基金jointly supported by the National key research priorities program of China (2016YFC0402402)National Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07101001)+1 种基金the National Natural Science Foundation (41301299)the Construction Project of Innovative Scientific and Technological Talents in Henan Province (162101510004)
文摘The Sediment Delivery Ratio(SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrological regime and watershed properties, may influence the SDR at interannual timescales. However, the effect of certain important dynamic factors, such as rainfall peak distribution, runoff erosion power and sediment bulk density, on the sediment delivery ratio of single flood events(SDRe) has received little attention. The Qiaogou headwater basin is in the hilly-gully region of the Chinese Loess Plateau, and it encompasses a 0.45 km^2 catchment. Three large-scale field runoff plots at different geomorphological positions were chosen to obtain the observation data, and the 20-year period between 1986 and 2005 is presented. The results showed that the SDRe of the Qiaogou headwaters varied from 0.49 to 2.77. Among the numerous influential factors, rainfall and runoff were the driving factors causing slope erosion and sediment transport. The rainfall erosivity had a significant positive relationship with the sediment transport modulus(R^2=0.85, P<0.01) but had no significant relationship with SDRe. The rainfall peak coefficient was significantly positively correlated with the SDRe(R^2=0.64, P<0.05), indicating the influence of rainfall energy distribution on the SDRe. The runoff erosion power index was not only significantly related to the sediment transport modulus(R^2=0.84, P<0.01) but also significantly related to the SDRe(R^2=0.57, P<0.01). In addition, the relative bulk density was significantly related to the SDRe, indicating that hyper-concentrated flow characteristics contributed to more transported sediment in the catchment. Thus, the rainfall peak coefficient, runoff erosion power and sediment relative bulk density could be used as dynamic indexes to predict the SDRe in the hilly areas of the Chinese Loess Plateau.
文摘This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).
基金Supported by 973 Program of China(2003CB415202),and by Key Project of Chinese Ministry of Education(03134).
文摘A physical modeling case study on flood and sediment disaster of waterpower stations in mountain rivers was conducted.Field observations and laboratory experiments show that the reasons induced disasters of Boluo Waterpower Station are those main characteristics of mountain rivers in South-Western China.High speed flows with velocities between 10 to 20 m/s are provided with strong sediment canting capacity in flood season.Steep banks with thick loose surfaces are rich in sediment supply by landslides and...
基金supported by the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(Grant No.CKWV2017499/KY)the National Natural Science Foundation of China(Grant No.51779280)
文摘Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.
文摘The Late Quaternary thick sedimentary fills of the Ganga basin predominantly consist of unconsolidated fluvial sandy deposits which are often intercalated with mud. These deposits at various places record the evidence of earthquakes, which occurred in the recent geological past. The evidence is contained and manifested in the form of Soft Sediment Deformation Structures (SSDSs). Saturated sediments/muds/soils are liquefied by earthquake tremors which either generate SSDS or produce structural discordance in the pre-existing sedimentary structures. The present study reports the occurrence of SSDS, e.g. load and associated flame structures, clastic dikes and sill structures, slump structures and sedimentary breccias, etc. from the Ganga River and adjacent oxbow lake sediment deposits. An attempt has been made to establish the origin of soft sediment structures of this region in accordance with its neotectonic history and in turn, identification of seismic structural proxies to delineate paleoseismic events in this region with futuristic implications. The preservation of soft sediment deformation structures in large numbers with multiple geomorphology and scale, in the river and adjoining lake sediments, is indicative of frequent earthquakes of high magnitude consequent to tectonic activism in the Himalayan region.
文摘Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silted with infertile materials considered unfit for crop production. A study was conducted to explain why the flood phenomenon occurred, to determine the physico-chemical properties of the sediments silted in the Kelantan Plains and to propose measures for soil mitigation. Results showed that the silted sediments were characterized by the presence of quarts, mica, feldspars, kaolinite, gibbsite and hematite believed to come from the top- and subsoil of the upland areas. The sediments’ pH was very low and Al and/or Fe contents were very high, while nitrogen and carbon contents varied from area to area. Soils in the Kelantan Plains badly affected by this great flood needed to undergo proper ameliorative program. The most appropriate measure would be to apply ground magnesium limestone in combination with bio-fertilizer fortified with beneficial microbes that would increase their pH to a level above 5, which consequently eliminates Al<sup>3+</sup> and/or Fe<sup>2+</sup> that causes toxicity to the crops growing on them. The organic material so added would enhance the formation of soil structures. It is advised that the farming communities in the upper reaches of the Kelantan River would have to follow the advice advocated by the Department of Agriculture, Peninsular Malaysia, via MyGAP initiative, in order to sustain agricultural production on their land.
文摘This study aims to show the impact of successive floods on the spatial variation of the physico-chemical properties of sediments along the Bandama River in the localities of Sinématiali and Niakaramadougou because of their importance in the functioning of this ecosystem. Several samples were taken from both stations based on flood recurrence areas. The particle size analysis was done using the Robinson’s Pipette method. Traditional methods of sediment analysis have been used to measure organic carbon (O.C.), nitrogen (N), and other chemical properties including pH, organic matter (MO), and C/N ratio. Statistical analyzes were carried out to assess the differences between the physico-chemical parameters of the different sampling zones. In the area of niakamadougou, the lower values in MO were recorded in areas subject to more frequent flooding, thus close to the watercourse. In the Sinématiali area, lower M.O. values were recorded in sediments far from the stream. Total organic matter levels are higher in surface sediments with the lowest proportions of clay. The results show that the physico-chemical properties of the sediments vary at the level of the vertical distribution and according to their spatial distribution. Successive floods have a direct effect on the dynamics of the physico-chemical properties of sediments along the shore.
文摘Hyperconcentrated floods in the Yellow River usually accompanied with some peculiar phenomena that cannot be explained by general conceptions of ordinary sediment-laden flow (e.g., downstream increase in peak discharge, instability flow, ripping up the bottom). Up to date, the mechanisms for the abnormal phenomena are not well understood. The aim of this paper is to facilitate a new insight into the abnormal downstream increase in peak discharge of hyperconcentrated floods in the lower Yellow River. Numerical model experiments have been conducted on a typical flood occurred in August 1992 in the Lower Yellow River during which the peak discharge at Huayuankou station was 1690 m3/s larger than the value at Xiaolangdi station at upstream. It is found that a fully coupled model that incorporates the contribution of bed evolution to the mass conservation of the water-sediment mixture, can reasonably well capture the characteristics of peak discharge rise and severe bed scour, while separate numerical experiment using a decoupled model, which ignores the feedback effects of bed evolution, shows no rise in the peak discharge. This leads us to comment, if only briefly, that the entrainment of sediment due to bed erosion is the main reason for causing peak discharge increase along downstream course.
文摘In this preliminary study, it is shown that for a reservoir on a river of rich runoff like the Yangtze of a rich runoff, an elaborate scheme of sediment management may be devised to substantially reduce the reservoir deposition. The mathematical model applied in this investigation has been fairly well verified with the long term field data on the sediment transport by an unsteady flow in the lower Yellow River. In view of the importance of TGP, however, a further investigation with physical models and mathematical models of other versions is planned. Great financial benefits are involved.