Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spa...Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.展开更多
The Drought, Flood and Waterlogging Damage (DFWD) study is related to many subjects such as meteorology and climatology, hydrology, geography, and agricultural science In the aforementioned subjects, substantial work ...The Drought, Flood and Waterlogging Damage (DFWD) study is related to many subjects such as meteorology and climatology, hydrology, geography, and agricultural science In the aforementioned subjects, substantial work has been done on DFWD study by a lot of researchers from the views of their specialities This paper tries to introduce the recent progress on the field Four main problems are referred to the DFWD study, they are as following: (1) The change sequence in historical period The historical data must be quantatitively processed For this purpose, many schemes were suggested in the past years Studies of the historical DFWD have been emphasized in the last fivehundred years as well as the other time scales (2) The mechanism and trigger event Natural disasters are related to factors disastrous to human activities in the evolution of physical environment, and they can reflect natural features of constitution of the physical environment The factors include the monsoon circulation, the sea tempereature effects, the ENSO, and the others (3) The loss estimation The DFWD is not a pure meteorological damage, and it is also a complex ecological damage The ecological effects, crop influences and other socialenvironment features will be considered on the estimation of DFWD loss (4) The measures of prevention and control Many forecast models are developed, and the measures of prevention and control are suggested, ie, the adoption of measures combining engineering techniques with biological measurres In the past years, advances have been made in those four aspects展开更多
Lixiahe region is one of the susceptible area to flood and waterlogging disasters in China due to its low topographic relief and having difficulty in draining floodwater away.The condition will be more serious if sea ...Lixiahe region is one of the susceptible area to flood and waterlogging disasters in China due to its low topographic relief and having difficulty in draining floodwater away.The condition will be more serious if sea level rises in the future.The estimated results by some scientists indicate that the sea level could rise probably 20-100 cm by 2050.However,what the effect will future sea level rise exerts on flood drainage and on flood or waterlogging disasters? A hydrological system model has been developed to study the problem in the lower reaches of the Sheyang River basin.Predicted results from the model show that,if sea level rises,drainage capacity of each drainage river will decrease obviously,and the water level will also rise.From the change of drainage capacity of drainage rivers the trends of flood and waterlogging disasters are analyzed in the paper if the severe flood that happened in the past meets with future sea level rise.Some countermeasures for disaster reduction and prevention against sea-level rise are put forward.展开更多
In this paper, the water equilibrium and ground truth are analyzed for '91.7' rainstormin Sihu drainage area, Hubei Province, China. The flood and waterlogging situation of ' 91.7'rainstorm in this are...In this paper, the water equilibrium and ground truth are analyzed for '91.7' rainstormin Sihu drainage area, Hubei Province, China. The flood and waterlogging situation of ' 91.7'rainstorm in this area are investigated using remote sensing, especially the estimation of inundatedarea, the analysis of temporal and spatial characters of this flood and waterlogging damage. Andthe way of flood-trace using remote sensing is explored. At last, the disastroiis conditions are evalu-ated.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40971189)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)China Postdoctoral Science Foundation (No. 20100471276)
文摘Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.
文摘The Drought, Flood and Waterlogging Damage (DFWD) study is related to many subjects such as meteorology and climatology, hydrology, geography, and agricultural science In the aforementioned subjects, substantial work has been done on DFWD study by a lot of researchers from the views of their specialities This paper tries to introduce the recent progress on the field Four main problems are referred to the DFWD study, they are as following: (1) The change sequence in historical period The historical data must be quantatitively processed For this purpose, many schemes were suggested in the past years Studies of the historical DFWD have been emphasized in the last fivehundred years as well as the other time scales (2) The mechanism and trigger event Natural disasters are related to factors disastrous to human activities in the evolution of physical environment, and they can reflect natural features of constitution of the physical environment The factors include the monsoon circulation, the sea tempereature effects, the ENSO, and the others (3) The loss estimation The DFWD is not a pure meteorological damage, and it is also a complex ecological damage The ecological effects, crop influences and other socialenvironment features will be considered on the estimation of DFWD loss (4) The measures of prevention and control Many forecast models are developed, and the measures of prevention and control are suggested, ie, the adoption of measures combining engineering techniques with biological measurres In the past years, advances have been made in those four aspects
文摘Lixiahe region is one of the susceptible area to flood and waterlogging disasters in China due to its low topographic relief and having difficulty in draining floodwater away.The condition will be more serious if sea level rises in the future.The estimated results by some scientists indicate that the sea level could rise probably 20-100 cm by 2050.However,what the effect will future sea level rise exerts on flood drainage and on flood or waterlogging disasters? A hydrological system model has been developed to study the problem in the lower reaches of the Sheyang River basin.Predicted results from the model show that,if sea level rises,drainage capacity of each drainage river will decrease obviously,and the water level will also rise.From the change of drainage capacity of drainage rivers the trends of flood and waterlogging disasters are analyzed in the paper if the severe flood that happened in the past meets with future sea level rise.Some countermeasures for disaster reduction and prevention against sea-level rise are put forward.
文摘In this paper, the water equilibrium and ground truth are analyzed for '91.7' rainstormin Sihu drainage area, Hubei Province, China. The flood and waterlogging situation of ' 91.7'rainstorm in this area are investigated using remote sensing, especially the estimation of inundatedarea, the analysis of temporal and spatial characters of this flood and waterlogging damage. Andthe way of flood-trace using remote sensing is explored. At last, the disastroiis conditions are evalu-ated.