期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A SPLIT-CHARACTERISTIC FINITE ELEMENT MODEL FOR 1-D UNSTEADY FLOWS 被引量:8
1
作者 ZHOU Yi-lin TANG Hong-wu LIU Xiao-hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第1期54-61,共8页
An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the ... An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage. 展开更多
关键词 split characteristic finite element method tri-diagonal matrix algorithm 1-D unsteady flow flood wave river networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部