The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing ...The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.展开更多
This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the l...This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.展开更多
The physical vulnerability of coastal areas due to rising sea level and the flooding risk consequent,does not guarantee the implementation of protective behaviors by these risk zones’inhabitants.This study aims to es...The physical vulnerability of coastal areas due to rising sea level and the flooding risk consequent,does not guarantee the implementation of protective behaviors by these risk zones’inhabitants.This study aims to establish the link between the willingness to carry out protective behaviors and physical and perceived indicators of vulnerability.A typology of coastal flooding vulnerability,uses various physical indicators and their perceived counterparts which have been collected from 490 inhabitants of Cartagena(Colombia,declared world heritage of humanity by UNESCO in 1984),resident in areas of coastal flooding risks.The item-response theory(IRT)approach has been used.The results reveal that the implementation of protective behaviors is more related to perceived indicators,such as distance to the sea,than to actual physical vulnerability.We observe that physical vulnerability is linked to the intention to carry out protective behaviors.The presence of a defensive structure against coastal flooding could be considered as a visual cue and be a good predictor of the willingness to carry out protective behaviors.On the contrary,people in the most vulnerable situation(single-storey house)do not demonstrate a higher level of willingness to carry out protective behavior,as well of participants who lived in residential buildings which have demonstrated lower level of willingness to carry out such behaviors.Therefore,vulnerability of the house is not seen as a criterion that encourages participants to better protect themselves.展开更多
In order to better identify spatially the areas at risk of flooding for the riparian populations of Grand-Bassam during strong floods, a study aimed at developing hazard and vulnerability maps from RADAR Sentinel-1 an...In order to better identify spatially the areas at risk of flooding for the riparian populations of Grand-Bassam during strong floods, a study aimed at developing hazard and vulnerability maps from RADAR Sentinel-1 and optical images Sentinel-2 has been put in place. The flood hazard study highlighted the flooded areas in Grand-Bassam. These areas represent 747.7 ha, or 1.02% of the total surface. The vulnerability map produced using the maximum likelihood method identified eight (8) land use classes. These are the classes Water, Dense forest, Secondary forest, Swamp forest, Industrial crops, Food crops, Habitats and bare soils. It made it possible to highlight the socio-economic interests of Grand-Bassam. The flood risk map developed from the intersection of the themes of the vulnerability map and that of the hazard has enabled the recognition of risk areas which are located near the source of the risk (Comoé River) and at low altitudes. These are Moossou, Petit Paris, Quartier Phare and Quartier France.展开更多
Climate change and population growth have led to the increase and/or intensification of flooding becoming a major issue. The objective of this study is to visualize flooding risk of municipalities at the intersection ...Climate change and population growth have led to the increase and/or intensification of flooding becoming a major issue. The objective of this study is to visualize flooding risk of municipalities at the intersection of the coastal sedimentary zone and the crystalline surface. The methodology adopted is based on geomatic approach, which involves documentary research, processing and assisted classification using remote sensing images and multi-criteria analysis of the Geographic Information System (GIS). Flooding risk is very high at 8.85% in Djidja, Toffo, Zè and Bonou municipalities. In other municipalities such as Agbangnizoun, Abomey, Bohicon, Za-Kpota and Cove, it is high of 46.85%. To the Southeast of the study area, it is located on the eastern and western banks of Oueme Valley. The medium risk represents 26.35% and is located in the municipalities of Ouinhi and Adjohoun. The other municipalities have a low rate of 17.95%. Risk modeling has made it possible to access the various levels of rising water that can cause flooding. Land-use planning decisions can be influenced by the results of this study.展开更多
Floods are among the worst natural catastrophes, devastating homes, businesses, public buildings, farms, and crops. Studies show that it’s not the flood itself that’s deadly but people’s vulnerability. This study i...Floods are among the worst natural catastrophes, devastating homes, businesses, public buildings, farms, and crops. Studies show that it’s not the flood itself that’s deadly but people’s vulnerability. This study investigates the Ala and Akure-Ofosu flood-prone zones;identifies elements that cause flooding in the study area;classifies each criterion by its effect;develops a flood risk map;estimates flood damage using Sentinel-1A SAR data;compares AHP results. Literature study and GIS-computer database georeferenced fieldwork data. Photos from the 2020 Sentinel 2A satellite have been organized. Built-up area, cropland, rock, the body of water, and forest Land use and cover, slope, rainfall, soil, Euclidean River Distance, and flow accumulation were mapped. These variables were integrated into a Multi-Criteria Analysis (MCA) using GIS tools, resulting in the creation of a flood risk map that categorizes the region into five risk zones: 5% of the area is identified as high-risk, 21% as low-risk, and 74% as moderate-risk. Copernicus SAR data from before and after the flood were processed on Google Earth Engine to map flood extent and ensured that the MCA map accurately reflected flood-prone areas. Periodic review, real-time flood susceptibility monitoring, early warning, and quick damage assessment are suggested to avoid flood danger and other environmental problems.展开更多
Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy sea...Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy season. The study aims to assess recent flood risks in the municipality of Yopougon of the Autonomous District of Abidjan. To achieve this objective, the study analyzed two types of data: daily rainfall from 1971 to 2022 and parameters derived from a Numerical Field and Altitude Model (NFAM). The study examined six rainfall parameters using statistical analysis and combined land use maps obtained from the NFAM of Yopougon. The results indicated that, in 67% of cases, extreme rainfall occurred mainly between week 3 of May and week 1 of July. The peak of extreme rainfall was observed in week 2 of June with 15% of cases. These are critical periods of flood risks in the Autonomous District of Abidjan, especially in Yopougon. In addition, there was variability of rainfall parameters in the Autonomous District of Abidjan. This was characterized by a drop of annual and seasonal rainfall, and an increase of numbers of rainy days. Flood risks in Yopougon are, therefore, due to the regular occurrence of rainy events. Recent floods in Yopougon were caused by normal rains ranging from 55 millimeters (mm) to 153 mm with a return period of less than five years. Abnormal heavy rains of a case study on June 20-21, 2022 in Yopougon were detected by outputs global climate models. Areas of very high risk of flood covered 18% of Yopougon, while 31% were at high risk. Climate information from this study can assist authorities to take in advance adaptation and management measures.展开更多
This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spati...This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spatial unit of township. Firstly, the spatial extent and characteristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly, for each of the township, six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion, cultivated land proportion, GDP per unit area, employment proportion of primary industry, net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly, the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coefficient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers' livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the "five rivers".展开更多
The prolonged mei-yu/baiu system with anomalous precipitation in the year 2020 has swollen many rivers and lakes,caused flash flooding,urban flooding and landslides,and consistently wreaked havoc across large swathes ...The prolonged mei-yu/baiu system with anomalous precipitation in the year 2020 has swollen many rivers and lakes,caused flash flooding,urban flooding and landslides,and consistently wreaked havoc across large swathes of China,particularly in the Yangtze River basin.Significant precipitation and flooding anomalies have already been seen in magnitude and extension so far this year,which have been exerting much higher pressure on emergency responses in flood control and mitigation than in other years,even though a rainy season with multiple ongoing serious flood events in different provinces is not that uncommon in China.Instead of delving into the causes of the uniqueness of this year’s extreme precipitation-flooding situation,which certainly warrants in-depth exploration,in this article we provide a short view toward a more general hydrometeorological solution to this annual nationwide problem.A“glocal”(global to local)hydrometeorological solution for floods(GHS-F)is considered to be critical for better preparedness,mitigation,and management of different types of significant precipitation-caused flooding,which happen extensively almost every year in many countries such as China,India and the United States.Such a GHS-F model is necessary from both scientific and operational perspectives,with the strength in providing spatially consistent flood definitions and spatially distributed flood risk classification considering the heterogeneity in vulnerability and resilience across the entire domain.Priorities in the development of such a GHS-F are suggested,emphasizing the user’s requirements and needs according to practical experiences with various flood response agencies.展开更多
With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distri...With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distribution of flood risk.This paper proposed an urban flood risk assessment method that takes into account the influences of hazard,vulnerability,and exposure,by constructing a multi-index urban flood risk assessment framework based on Geographic Information System(GIS).To determine the weight values of urban flood risk index factors,we used the analytic hierarchy process(AHP).Also,we plotted the temporal and spatial distribution maps of flood risk in Zhengzhou City in 2000,2005,2010,2015,and 2020.The analysis results showed that,the proportion of very high and high flood risk zone in Zhengzhou City was 1.362%,5.270%,4.936%,12.151%,and 24.236%in 2000,2005,2010,2015,and 2020,respectively.It is observed that the area of high flood risk zones in Zhengzhou City showed a trend of increasing and expanding,of which Dengfeng City,Xinzheng City,Xinmi City,and Zhongmu County had the fastest growth rate and the most obvious increase.The flood risk of Zhengzhou City has been expanding with the development of urbanization.The method is adapted to Zhengzhou City and will have good adaptability in other research areas,and its risk assessment results can provide a scientific reference for urban flood management personnel.In the future,the accuracy of flood risk assessment can be further improved by promoting the accuracy of basic data and reasonably determining the weight values of index factors.The risk zoning map can better reflect the risk distribution and provide a scientific basis for early warning of flood prevention and drainage.展开更多
As a hazard, flood is an extremely important indicator of how a city is resilient to waterborne diseases and epidemics. Over many decades, flood as a hazard has been a major factor in inducing displacement of marginal...As a hazard, flood is an extremely important indicator of how a city is resilient to waterborne diseases and epidemics. Over many decades, flood as a hazard has been a major factor in inducing displacement of marginalized section of the people. Austin city within Central Texas has been identified as one of the major hotspots for flooding in recent decades. Thus, the objectives of the paper are two folded: 1) Empirically, we analyzed and mapped out the susceptibility levels from the factors of physical environments to assess the risk of urban flooding (rainfall data, surface water bodies and topography);in Austin, Texas and 2) Methodologically, we created a re-useable ArcGIS scripting tool that can be used by researchers to automate the process of flood risk modelling with certain criteria. The paper showcases a novel time sensitive building of a tool which will enable better visibility of flood within the city of Austin.展开更多
This study develops a multivariate eco-hydrological risk-assessment framework based on the multivari-ate copula method in order to evaluate the occurrence of extreme eco-hydrological events for the Xiangxi River withi...This study develops a multivariate eco-hydrological risk-assessment framework based on the multivari-ate copula method in order to evaluate the occurrence of extreme eco-hydrological events for the Xiangxi River within the Three Gorges Reservoir (TGR) area in China. Parameter uncertainties in marginal distri-butions and dependence structure are quantified by a Markov chain Monte Carlo (MCMC) algorithm. Uncertainties in the joint return periods are evaluated based on the posterior distributions. The proba- bilistic features of bivariate and multivariate hydrological risk are also characterized. The results show that the obtained predictive intervals bracketed the observations well, especially for flood duration. The uncertainty for the joint return period in "AND" case increases with an increase in the return period for univariate flood variables. Furthermore, a low design discharge and high service time may lead to high bivariate hydrological risk with great uncertainty.展开更多
The heavy floods in the Taihu Basin showed increasing trend in recent years. In this work, a typical area in the northern Taihu Basin was selected for flood risk analysis and potential flood losses assessment. Human a...The heavy floods in the Taihu Basin showed increasing trend in recent years. In this work, a typical area in the northern Taihu Basin was selected for flood risk analysis and potential flood losses assessment. Human activities have strong impact on the study area’s flood situation (as affected by the polders built, deforestation, population increase, urbanization, etc.), and have made water level higher, flood duration shorter, and flood peaks sharper. Five years of different flood return periods [(1970), 5 (1962), 10 (1987), 20 (1954), 50 (1991)] were used to calculate the potential flood risk area and its losses. The potential flood risk map, economic losses, and flood-impacted population were also calculated. The study’s main conclusions are: 1) Human activities have strongly changed the natural flood situation in the study area, increasing runoff and flooding; 2) The flood risk area is closely related with the precipitation center; 3) Polder construction has successfully protected land from flood, shortened the flood duration, and elevated water level in rivers outside the polders; 4) Economic and social development have caused flood losses to increase in recent years.展开更多
Check dams have been widely used in China’s Loess Plateau region due to their effectiveness in erosion and flood control.However,the safety and stability of the check dam decrease with the operation process,which inc...Check dams have been widely used in China’s Loess Plateau region due to their effectiveness in erosion and flood control.However,the safety and stability of the check dam decrease with the operation process,which increases the probability of dam failure during flood events and threatens local residents’ life and property.Thus,this study simulated flood process of the check dam failure in the Wangmaogou watershed in Yulin City,Shaanxi Province,China,calculated different types of inundation losses based on the flood inundation area within the watershed,and determined the number of key flood protection check dams by classifying the flood risk levels of the check dams.The results showed that 5 dams in the watershed were subject to overtopping during different rainfall return periods,which was related to their flood discharge capacity.Dam failure flood process showed a rapid growth trend followed by slow decrease,and the time of flood peak advanced with increase in the return period.After harmonization of evaluation scales,the magnitude of flood inundation losses can be ranked as:economic losses(212.409 million yuan) > life losses(10.368 million yuan) > ecological losses(6.433 million yuan).The risk value for both individual dams and the whole dam system decreases as the return period increases.The number of key flood protection check dams in the Wangmaogou watershed was 2,3,3,3,4,and 5 for floods with return periods of 10,20,30,50,100,and 200 years,respectively.The results provided a theoretical basis for the safe operation and risk evaluation of check dams in the Loess Plateau Hills watershed.展开更多
Connecting to the disaster risk reduction (DRR) studies, community-based initiatives are found to be more effective in both developed and developing countries, with a specific focus on the empowerment of local communi...Connecting to the disaster risk reduction (DRR) studies, community-based initiatives are found to be more effective in both developed and developing countries, with a specific focus on the empowerment of local communities to build resilience. Building on social capital theory, the paper investigates on local knowledge (LK) practices experienced by the actors in an emerging economy using the community-based flood risk management (CB-FRM) approach. The qualitative research method was used by collecting data from focused group discussions, and interviews with the key informants including actors from local governments and non-government organizations. Additionally, informal discussions, field visits, and desk studies were undertaken to support the findings. The findings reveal that the local communities carry out various local knowledge experiences to respond during disaster management phases. They own a creative set of approaches based on the LK and that empowers them to live in the flood-prone areas, accepting the paradigm shift from fighting with floods to living with that. The local actor’s involvement is recognized as an essential component for CB-FRM activities. Yet, their program’s implementation is more oriented towards humanitarian assistance in emergency responses. Even, they often overlook the role of LK. Additionally, the results show a high level of presence of local communities during the preparedness and recovery phases, while NGOs and local governments have a medium role in preparedness and low in recovery phase. The lack of local ownership has also emerged as the major challenge. The research provides valuable insights for integrated CB-FRM policies by adopting to LK practices.展开更多
Global concerns about changes in the world's climate have been well documented. The consequent impacts on coastal cities, agriculture, and coastal mariculture are difficult to quantify, but it is clear that there is ...Global concerns about changes in the world's climate have been well documented. The consequent impacts on coastal cities, agriculture, and coastal mariculture are difficult to quantify, but it is clear that there is a need for both better estimates of future climate and improved forecasting of storms and their impacts.展开更多
This study looked at rapid urbanization and the flood risk it portends with a view to identifying mechanisms for coping in coastal zones of Nigeria. Flooding is one of the various ecological problems that has taken it...This study looked at rapid urbanization and the flood risk it portends with a view to identifying mechanisms for coping in coastal zones of Nigeria. Flooding is one of the various ecological problems that has taken its toll on the quality of the environment, human health, and economic growth in parts of Africa and the coastal zones of Nigeria in particular. Rapid urbanization has been seen to result in changes in land use patterns which can adversely affect the hydrological processes in a catchment leading to a deteriorating water environment. warning systems are identified and discussed in the paper Structural and non-structural approach as well as flood early as flood risks coping mechanisms, It also discusses the policy implications that government through its relevant agencies must be up to its game by monitoring precursors, forecasting of probable floods and notification of alerts, It concludes and recommends that an active involvement of communities at risks is required and public education and awareness of risks should be facilitated through effective dissemination, as well as ensuring that there is a constant preparedness,展开更多
Taking the rainstorm flood disaster of Huaihe River basin as the research object,according to the principles of risk assessment for natural disasters,starting from the fatalness of inducing factors and the vulnerabili...Taking the rainstorm flood disaster of Huaihe River basin as the research object,according to the principles of risk assessment for natural disasters,starting from the fatalness of inducing factors and the vulnerability of hazard bearing body,the weight of each impact factor was calculated by using AHP. By using spatial analysis and statistical function of GIS,the integrated risk chart of rainstorm flood disaster in Huaihe River basin was obtained. The results showed that the high risk areas of rainstorm flood disaster in Huaihe River basin mainly distributed in the southern part of Henan,the central northern part of Anhui and eastern part of Jiangsu Province. Due to higher fatalness of inducing factors in southern Henan,there was high risk in the region. Central Anhui and east Jiangsu were not only high-fatalness zones but also high vulnerability zones of population and economy.展开更多
INTRODUCTION The Netherlands faces a significant flood risk task. In order to remain a safe place to live the Netherlands has to upgrade its extensive flood risk protection system. This results in an elevation and rei...INTRODUCTION The Netherlands faces a significant flood risk task. In order to remain a safe place to live the Netherlands has to upgrade its extensive flood risk protection system. This results in an elevation and reinforcement task for many of the Netherlands water barriers. When those barriers are positioned in an open landscape, the technical rein-forcement is often easy to embed specially. However, many barriers have been built over the years making the reinforcement into a challenging spatial assignment. This article shows different case study examples of a research by design study (performed in the broader context of the Dutch Delta programme) that explores integral design solutions for flood risk and spatial (re)development. The Houston Galveston Bay case study demonstrates the international applicability of the research by design method.展开更多
基金the National Natural Science Foundation of China(Grants No.42041006,41790443 and 41927806).
文摘The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.
文摘This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.
基金supported by the National Research Agency,France within the framework of the CLIMATRisk project(ANR-15-CE03-0002-01).
文摘The physical vulnerability of coastal areas due to rising sea level and the flooding risk consequent,does not guarantee the implementation of protective behaviors by these risk zones’inhabitants.This study aims to establish the link between the willingness to carry out protective behaviors and physical and perceived indicators of vulnerability.A typology of coastal flooding vulnerability,uses various physical indicators and their perceived counterparts which have been collected from 490 inhabitants of Cartagena(Colombia,declared world heritage of humanity by UNESCO in 1984),resident in areas of coastal flooding risks.The item-response theory(IRT)approach has been used.The results reveal that the implementation of protective behaviors is more related to perceived indicators,such as distance to the sea,than to actual physical vulnerability.We observe that physical vulnerability is linked to the intention to carry out protective behaviors.The presence of a defensive structure against coastal flooding could be considered as a visual cue and be a good predictor of the willingness to carry out protective behaviors.On the contrary,people in the most vulnerable situation(single-storey house)do not demonstrate a higher level of willingness to carry out protective behavior,as well of participants who lived in residential buildings which have demonstrated lower level of willingness to carry out such behaviors.Therefore,vulnerability of the house is not seen as a criterion that encourages participants to better protect themselves.
文摘In order to better identify spatially the areas at risk of flooding for the riparian populations of Grand-Bassam during strong floods, a study aimed at developing hazard and vulnerability maps from RADAR Sentinel-1 and optical images Sentinel-2 has been put in place. The flood hazard study highlighted the flooded areas in Grand-Bassam. These areas represent 747.7 ha, or 1.02% of the total surface. The vulnerability map produced using the maximum likelihood method identified eight (8) land use classes. These are the classes Water, Dense forest, Secondary forest, Swamp forest, Industrial crops, Food crops, Habitats and bare soils. It made it possible to highlight the socio-economic interests of Grand-Bassam. The flood risk map developed from the intersection of the themes of the vulnerability map and that of the hazard has enabled the recognition of risk areas which are located near the source of the risk (Comoé River) and at low altitudes. These are Moossou, Petit Paris, Quartier Phare and Quartier France.
文摘Climate change and population growth have led to the increase and/or intensification of flooding becoming a major issue. The objective of this study is to visualize flooding risk of municipalities at the intersection of the coastal sedimentary zone and the crystalline surface. The methodology adopted is based on geomatic approach, which involves documentary research, processing and assisted classification using remote sensing images and multi-criteria analysis of the Geographic Information System (GIS). Flooding risk is very high at 8.85% in Djidja, Toffo, Zè and Bonou municipalities. In other municipalities such as Agbangnizoun, Abomey, Bohicon, Za-Kpota and Cove, it is high of 46.85%. To the Southeast of the study area, it is located on the eastern and western banks of Oueme Valley. The medium risk represents 26.35% and is located in the municipalities of Ouinhi and Adjohoun. The other municipalities have a low rate of 17.95%. Risk modeling has made it possible to access the various levels of rising water that can cause flooding. Land-use planning decisions can be influenced by the results of this study.
文摘Floods are among the worst natural catastrophes, devastating homes, businesses, public buildings, farms, and crops. Studies show that it’s not the flood itself that’s deadly but people’s vulnerability. This study investigates the Ala and Akure-Ofosu flood-prone zones;identifies elements that cause flooding in the study area;classifies each criterion by its effect;develops a flood risk map;estimates flood damage using Sentinel-1A SAR data;compares AHP results. Literature study and GIS-computer database georeferenced fieldwork data. Photos from the 2020 Sentinel 2A satellite have been organized. Built-up area, cropland, rock, the body of water, and forest Land use and cover, slope, rainfall, soil, Euclidean River Distance, and flow accumulation were mapped. These variables were integrated into a Multi-Criteria Analysis (MCA) using GIS tools, resulting in the creation of a flood risk map that categorizes the region into five risk zones: 5% of the area is identified as high-risk, 21% as low-risk, and 74% as moderate-risk. Copernicus SAR data from before and after the flood were processed on Google Earth Engine to map flood extent and ensured that the MCA map accurately reflected flood-prone areas. Periodic review, real-time flood susceptibility monitoring, early warning, and quick damage assessment are suggested to avoid flood danger and other environmental problems.
文摘Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy season. The study aims to assess recent flood risks in the municipality of Yopougon of the Autonomous District of Abidjan. To achieve this objective, the study analyzed two types of data: daily rainfall from 1971 to 2022 and parameters derived from a Numerical Field and Altitude Model (NFAM). The study examined six rainfall parameters using statistical analysis and combined land use maps obtained from the NFAM of Yopougon. The results indicated that, in 67% of cases, extreme rainfall occurred mainly between week 3 of May and week 1 of July. The peak of extreme rainfall was observed in week 2 of June with 15% of cases. These are critical periods of flood risks in the Autonomous District of Abidjan, especially in Yopougon. In addition, there was variability of rainfall parameters in the Autonomous District of Abidjan. This was characterized by a drop of annual and seasonal rainfall, and an increase of numbers of rainy days. Flood risks in Yopougon are, therefore, due to the regular occurrence of rainy events. Recent floods in Yopougon were caused by normal rains ranging from 55 millimeters (mm) to 153 mm with a return period of less than five years. Abnormal heavy rains of a case study on June 20-21, 2022 in Yopougon were detected by outputs global climate models. Areas of very high risk of flood covered 18% of Yopougon, while 31% were at high risk. Climate information from this study can assist authorities to take in advance adaptation and management measures.
基金Key Laboratory of Poyang Lake Ecological Environment and Resource Development, No.PK2004017 National Natural Science Foundation of China, No.40561011
文摘This paper quantitatively explores farmers' vulnerability to flood in the Poyang Lake Region (PLR) with the supports of GIS spatial functions. The analysis consists of three major steps, which is based on the spatial unit of township. Firstly, the spatial extent and characteristics of flood risk areas were determined using a digital elevation model (DEM) derived from the 1:50,000 topographic map. Secondly, for each of the township, six indices indicating the economic activities of local farmers were calculated. These indices are: rural population proportion, cultivated land proportion, GDP per unit area, employment proportion of primary industry, net rural income per capita and agricultural income proportion. These six indices were then normalized and used for later vulnerability assessment. Thirdly, the normalized indices (as GIS data layers) were overlaid with the flood risk areas to produce the risk coefficient for each township and to calculate the overall vulnerability for each township. The analysis results show that in the PLR there are high flood risk areas where the farmers' livings are seriously influenced or threatened. About 55.56% of the total 180 townships in the flood risk areas have a high degree of flood vulnerability. The townships under flood risk are mainly distributed in the areas around the Poyang Lake and the areas along the "five rivers".
基金This study was supported by the National Key R&D Program of China(Grant No.2017YFA0604300)the National Natural Science Foundation of China(Grant Nos.41861144014,41775106 and U1811464)+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(Grant No.2017ZT07X355)the project of the Chinese Ministry of Emergency Management on“Catastrophe Evaluation Modeling Study”.
文摘The prolonged mei-yu/baiu system with anomalous precipitation in the year 2020 has swollen many rivers and lakes,caused flash flooding,urban flooding and landslides,and consistently wreaked havoc across large swathes of China,particularly in the Yangtze River basin.Significant precipitation and flooding anomalies have already been seen in magnitude and extension so far this year,which have been exerting much higher pressure on emergency responses in flood control and mitigation than in other years,even though a rainy season with multiple ongoing serious flood events in different provinces is not that uncommon in China.Instead of delving into the causes of the uniqueness of this year’s extreme precipitation-flooding situation,which certainly warrants in-depth exploration,in this article we provide a short view toward a more general hydrometeorological solution to this annual nationwide problem.A“glocal”(global to local)hydrometeorological solution for floods(GHS-F)is considered to be critical for better preparedness,mitigation,and management of different types of significant precipitation-caused flooding,which happen extensively almost every year in many countries such as China,India and the United States.Such a GHS-F model is necessary from both scientific and operational perspectives,with the strength in providing spatially consistent flood definitions and spatially distributed flood risk classification considering the heterogeneity in vulnerability and resilience across the entire domain.Priorities in the development of such a GHS-F are suggested,emphasizing the user’s requirements and needs according to practical experiences with various flood response agencies.
基金the National Natural Science Foundation of China(52192671,51979285)the Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(SKL2022TS11)。
文摘With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distribution of flood risk.This paper proposed an urban flood risk assessment method that takes into account the influences of hazard,vulnerability,and exposure,by constructing a multi-index urban flood risk assessment framework based on Geographic Information System(GIS).To determine the weight values of urban flood risk index factors,we used the analytic hierarchy process(AHP).Also,we plotted the temporal and spatial distribution maps of flood risk in Zhengzhou City in 2000,2005,2010,2015,and 2020.The analysis results showed that,the proportion of very high and high flood risk zone in Zhengzhou City was 1.362%,5.270%,4.936%,12.151%,and 24.236%in 2000,2005,2010,2015,and 2020,respectively.It is observed that the area of high flood risk zones in Zhengzhou City showed a trend of increasing and expanding,of which Dengfeng City,Xinzheng City,Xinmi City,and Zhongmu County had the fastest growth rate and the most obvious increase.The flood risk of Zhengzhou City has been expanding with the development of urbanization.The method is adapted to Zhengzhou City and will have good adaptability in other research areas,and its risk assessment results can provide a scientific reference for urban flood management personnel.In the future,the accuracy of flood risk assessment can be further improved by promoting the accuracy of basic data and reasonably determining the weight values of index factors.The risk zoning map can better reflect the risk distribution and provide a scientific basis for early warning of flood prevention and drainage.
文摘As a hazard, flood is an extremely important indicator of how a city is resilient to waterborne diseases and epidemics. Over many decades, flood as a hazard has been a major factor in inducing displacement of marginalized section of the people. Austin city within Central Texas has been identified as one of the major hotspots for flooding in recent decades. Thus, the objectives of the paper are two folded: 1) Empirically, we analyzed and mapped out the susceptibility levels from the factors of physical environments to assess the risk of urban flooding (rainfall data, surface water bodies and topography);in Austin, Texas and 2) Methodologically, we created a re-useable ArcGIS scripting tool that can be used by researchers to automate the process of flood risk modelling with certain criteria. The paper showcases a novel time sensitive building of a tool which will enable better visibility of flood within the city of Austin.
基金This work was jointly funded by the National Natural Science Foundation of China (51520105013 and 51679087) and the National Key Research and Development Plan of China (2016YFC0502800).
文摘This study develops a multivariate eco-hydrological risk-assessment framework based on the multivari-ate copula method in order to evaluate the occurrence of extreme eco-hydrological events for the Xiangxi River within the Three Gorges Reservoir (TGR) area in China. Parameter uncertainties in marginal distri-butions and dependence structure are quantified by a Markov chain Monte Carlo (MCMC) algorithm. Uncertainties in the joint return periods are evaluated based on the posterior distributions. The proba- bilistic features of bivariate and multivariate hydrological risk are also characterized. The results show that the obtained predictive intervals bracketed the observations well, especially for flood duration. The uncertainty for the joint return period in "AND" case increases with an increase in the return period for univariate flood variables. Furthermore, a low design discharge and high service time may lead to high bivariate hydrological risk with great uncertainty.
文摘The heavy floods in the Taihu Basin showed increasing trend in recent years. In this work, a typical area in the northern Taihu Basin was selected for flood risk analysis and potential flood losses assessment. Human activities have strong impact on the study area’s flood situation (as affected by the polders built, deforestation, population increase, urbanization, etc.), and have made water level higher, flood duration shorter, and flood peaks sharper. Five years of different flood return periods [(1970), 5 (1962), 10 (1987), 20 (1954), 50 (1991)] were used to calculate the potential flood risk area and its losses. The potential flood risk map, economic losses, and flood-impacted population were also calculated. The study’s main conclusions are: 1) Human activities have strongly changed the natural flood situation in the study area, increasing runoff and flooding; 2) The flood risk area is closely related with the precipitation center; 3) Polder construction has successfully protected land from flood, shortened the flood duration, and elevated water level in rivers outside the polders; 4) Economic and social development have caused flood losses to increase in recent years.
基金supported by the National Natural Science Foundation of China (Grant 42077073, 42373063, 42307447)Natural Science Basic Research Plan in Shaanxi Province of China (2022KJXX-62)。
文摘Check dams have been widely used in China’s Loess Plateau region due to their effectiveness in erosion and flood control.However,the safety and stability of the check dam decrease with the operation process,which increases the probability of dam failure during flood events and threatens local residents’ life and property.Thus,this study simulated flood process of the check dam failure in the Wangmaogou watershed in Yulin City,Shaanxi Province,China,calculated different types of inundation losses based on the flood inundation area within the watershed,and determined the number of key flood protection check dams by classifying the flood risk levels of the check dams.The results showed that 5 dams in the watershed were subject to overtopping during different rainfall return periods,which was related to their flood discharge capacity.Dam failure flood process showed a rapid growth trend followed by slow decrease,and the time of flood peak advanced with increase in the return period.After harmonization of evaluation scales,the magnitude of flood inundation losses can be ranked as:economic losses(212.409 million yuan) > life losses(10.368 million yuan) > ecological losses(6.433 million yuan).The risk value for both individual dams and the whole dam system decreases as the return period increases.The number of key flood protection check dams in the Wangmaogou watershed was 2,3,3,3,4,and 5 for floods with return periods of 10,20,30,50,100,and 200 years,respectively.The results provided a theoretical basis for the safe operation and risk evaluation of check dams in the Loess Plateau Hills watershed.
文摘Connecting to the disaster risk reduction (DRR) studies, community-based initiatives are found to be more effective in both developed and developing countries, with a specific focus on the empowerment of local communities to build resilience. Building on social capital theory, the paper investigates on local knowledge (LK) practices experienced by the actors in an emerging economy using the community-based flood risk management (CB-FRM) approach. The qualitative research method was used by collecting data from focused group discussions, and interviews with the key informants including actors from local governments and non-government organizations. Additionally, informal discussions, field visits, and desk studies were undertaken to support the findings. The findings reveal that the local communities carry out various local knowledge experiences to respond during disaster management phases. They own a creative set of approaches based on the LK and that empowers them to live in the flood-prone areas, accepting the paradigm shift from fighting with floods to living with that. The local actor’s involvement is recognized as an essential component for CB-FRM activities. Yet, their program’s implementation is more oriented towards humanitarian assistance in emergency responses. Even, they often overlook the role of LK. Additionally, the results show a high level of presence of local communities during the preparedness and recovery phases, while NGOs and local governments have a medium role in preparedness and low in recovery phase. The lack of local ownership has also emerged as the major challenge. The research provides valuable insights for integrated CB-FRM policies by adopting to LK practices.
文摘Global concerns about changes in the world's climate have been well documented. The consequent impacts on coastal cities, agriculture, and coastal mariculture are difficult to quantify, but it is clear that there is a need for both better estimates of future climate and improved forecasting of storms and their impacts.
文摘This study looked at rapid urbanization and the flood risk it portends with a view to identifying mechanisms for coping in coastal zones of Nigeria. Flooding is one of the various ecological problems that has taken its toll on the quality of the environment, human health, and economic growth in parts of Africa and the coastal zones of Nigeria in particular. Rapid urbanization has been seen to result in changes in land use patterns which can adversely affect the hydrological processes in a catchment leading to a deteriorating water environment. warning systems are identified and discussed in the paper Structural and non-structural approach as well as flood early as flood risks coping mechanisms, It also discusses the policy implications that government through its relevant agencies must be up to its game by monitoring precursors, forecasting of probable floods and notification of alerts, It concludes and recommends that an active involvement of communities at risks is required and public education and awareness of risks should be facilitated through effective dissemination, as well as ensuring that there is a constant preparedness,
文摘Taking the rainstorm flood disaster of Huaihe River basin as the research object,according to the principles of risk assessment for natural disasters,starting from the fatalness of inducing factors and the vulnerability of hazard bearing body,the weight of each impact factor was calculated by using AHP. By using spatial analysis and statistical function of GIS,the integrated risk chart of rainstorm flood disaster in Huaihe River basin was obtained. The results showed that the high risk areas of rainstorm flood disaster in Huaihe River basin mainly distributed in the southern part of Henan,the central northern part of Anhui and eastern part of Jiangsu Province. Due to higher fatalness of inducing factors in southern Henan,there was high risk in the region. Central Anhui and east Jiangsu were not only high-fatalness zones but also high vulnerability zones of population and economy.
文摘INTRODUCTION The Netherlands faces a significant flood risk task. In order to remain a safe place to live the Netherlands has to upgrade its extensive flood risk protection system. This results in an elevation and reinforcement task for many of the Netherlands water barriers. When those barriers are positioned in an open landscape, the technical rein-forcement is often easy to embed specially. However, many barriers have been built over the years making the reinforcement into a challenging spatial assignment. This article shows different case study examples of a research by design study (performed in the broader context of the Dutch Delta programme) that explores integral design solutions for flood risk and spatial (re)development. The Houston Galveston Bay case study demonstrates the international applicability of the research by design method.