Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archiv...Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archives of the Qing Dynasty, the precipitation cycles are analyzed by wavelet analysis and the possible climate forcings, which drive the precipitation changes, are explored. The results show that: the precipitation in the middle and lower reaches of the Yellow River has inter-annual and inter-decadal oscillations like 2-4a, quasi-22a and 70-80a. The 2-4a cycle is linked with El Nino events, and the precipitation is lower than normal year in the occurrence of the El Nino year or the next year; for the quasi-22a and the 70-80a cycles, Wolf Sun Spot Numbers and Pacific Decadal Oscillation (PDO) coincide with the two cycle signals. However, on a 70-80a time scale, the coincidence between solar activity and precipitation is identified before 1830, and strong (weak) solar activity is generally correlated to the dry (wet) periods; after 1830, the solar activity changes to 80-100a quasi-century long oscillation, and the adjusting action to the precipitation is becoming weaker and weaker; the coincidence between PDO and precipitation is shown in the whole time series. Moreover, in recent 100 years, PDO is becoming a pace-maker of the precipitation on the 70-80a time scale.展开更多
[ Objective] The research aimed to study community structure of the phytoplankton and its relationship with environmental factor in lower reaches of the Yellow River. [ Method] From April to June in 2011, phytoplankto...[ Objective] The research aimed to study community structure of the phytoplankton and its relationship with environmental factor in lower reaches of the Yellow River. [ Method] From April to June in 2011, phytoplankton was conducted qualitative and quantitative researches in Lijin in lower reaches of the Yellow River. By combining population characteristics of the phytoplankton, its'relationship with environmental factor was dis- cussed. [ Result] 114 species and 5 phylum of phytoplankton were observed in the whole river section. The abundance of phytoplankton was 0.90 ×104 -303.35×104 ind/m3, and mean was 27.20 ×104 ind/m3. The biomass of phytoplankton was 0.008-5.890 mg/m3, and mean was 0.641 mg/m3. Shannon-Weaver diversity index, Pielou evenness index and Simpson's diversity index were respectively 1.59, 0.36 and 0.55. SPSS data analysis indicated that transparency was the uppermost environmental factor affected phytoplankton abundance. Phytoplankton abundance had posi- tive correlation with transparency, and the regression equation was y= -393.8 +115.5×-11 .lx2 +0.35x3(n=18, R2 =0.952, F=92.665, P〈0.01 ). [ Conclusion] The community structure of phytoplankton was unstable, and transparency was the uppermost environmental factor affected phyto- plankton abundance in lower reaches of the Yellow River.展开更多
Based on the analysis of hanging rivers' actuality in the lower Yellow River and researches related to the evaluation of dike breach risks,it is put forward that the influencing factors of dike beach risks in the ...Based on the analysis of hanging rivers' actuality in the lower Yellow River and researches related to the evaluation of dike breach risks,it is put forward that the influencing factors of dike beach risks in the lower Yellow River should involve four aspects,the flow and sediment movement,the regional crustal stability,the variation of river regime and the stability of river dikes.With this,the evaluation indexes system of dike breach risks is established,and with the support of geographic information systems technology,the model of multi-hierarchical fuzzy comprehensive judgment is applied to estimate the dike beach risks of the hanging rivers in the lower Yellow River under different flood conditions.The evaluation results of dike breach risks show the following distributing regularities of dike breach risks in the lower Yellow River:(1) Dike breach risks increase with the increase of the flood.(2) Dike breach risks decrease with the changes of river patterns along the channel.(3) There are great risks of dike breach in the wandering reaches,and it is relatively higher in the south bank than in the north in wandering reaches.(4) There is a higher dike breach risk in the north bank than in the south in winding reaches.Simultaneously,the evaluation results manifest that the evaluation indexes system established from the flow and sediment movement,the regional crustal stability,the variation of river regime and the stability of river dikes can represent the actual situation of the lower Yellow River more comprehensively.The application of multihierarchical fuzzy comprehensive judgment can preferably resolve the problem of hanging river dike breach,which has numerous influencing factors and complicated functionary mechanisms.The applications of geographic information systems technology with powerful spatial analysis functions make dike beach risks quantificationally displayed in different spatial positions,and reflect the differences of dike beach risks in different spatial positions of the channel in the lower Yellow River.展开更多
In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analy...In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analyzed their specific amino acids(AA),DOC,POC,and bacteria abundance.Summarized by 14 specific AA,the total hydrolysable AA(THAA),particulate AA(PAA),and sediment AA(SAA)varied in ranges of 2.29-9.05μmol L^-1,5.22-22.96μmol L^-1,and 81.7-137.19μg g^-1 dry weight.After the regulation,dissolved free AA(DFAA)decreased by 29%while DCAA increased by 72%.These variations suggested that DFAA were further degraded,while DCAA molecules were further activated.Meanwhile,PAA increased almost 4 times as many as those before regulation,and SAA increased as well.After regulation,the amounts of bioactive amino acids(Asp,Glu and Gly)increased in THAA but decreased in PAA,with little changes in SAA.The ratios of Asp/Gly in different phases increased after regulation,indicating the AA contributions were promoted by calcareous organisms rather than by siliceous organisms.Multiple correlation analysis showed that PAA was primary representatives of AA and organic carbon,followed by DCAA and POC.Moreover,bacterial reproduction played a key role in shaping the AA compositions and properties,followed by the redox condition and acid-base balance.The results of this study provided a clear evidence for the effects of water-sediment regulation on regional biogeochemistry of organic carbon in the middle-lower Yellow River.展开更多
The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "h...The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "hanging river". According to the characteristics of the dike-break flood of the Yellow River, this paper has simulated, in six different scenarios, the dike-break flood routing by inputting the terrain data, typical historical flood data and land use data of study area to two-dimensional unsteady flow model. The results show that: firstly, the routing process of flood will occupy other rivers on the way and return to the rivers after reaching the lower reaches; secondly, in the same river reach, flood inundating area of north band is bigger than that at corresponding location of south bank under the same historical flood; thirdly, it is different in the degree of flood inundation in different regions due to different geographical locations in flood plain; fourthly, the area of mainstream where flood is deep and flow velocity is quick is relatively smaller, but the area of non-mainstream, where flood is shallow and flow velocity is slow, is relatively big; and finally, the possible influenced area of the dike-break flood is 141,948 km^2.展开更多
It is very important to study the archaeological culture and origin of civilization in ancient China.The changes of the channels in the lower reaches of the Yellow River in the prehistoric period are part of the natur...It is very important to study the archaeological culture and origin of civilization in ancient China.The changes of the channels in the lower reaches of the Yellow River in the prehistoric period are part of the natural environmental background of the development of the ancient civilization in that area to be explored.This paper presents a series of legends,indications,scientific evidence,and macroscopic geographical background information of the evolution in the lower reaches of the Yellow River during the Longshan period.At first the river flowed from Northern Henan and Hebei to southwestern Shandong Province and Northern Anhui–Jiangsu provinces,and the mainstream of the Yellow River changed from the southeast to return to the north and flowed into the Bohai Sea in the late Longshan Period.During this period,floods were frequent.Various ethnic groups in the northern China plains suffered natural disasters and made great migrations which also contributed to the ethnic exchanges and integration.The people of the Central Plains made more dynamic adjustments in the relationship between mankind and the land by primitively escaping from the water and self–defensively controlling the rivers then to maintaining the local ecological environment by large–scale flood control measures,which promoted the settlement of Shandong,Henan,Jiangsu and Anhui provinces,the urban cultural development,and social evolution.Based on these events,the culture symbol of Dayu's Flood Control could be formed.展开更多
By using GIS and remote sensing techniques, the paper discusses how human activities have changed along the Yellow River in Henan province, China and how these altered activities have influenced the wetland landscape ...By using GIS and remote sensing techniques, the paper discusses how human activities have changed along the Yellow River in Henan province, China and how these altered activities have influenced the wetland landscape pattern change from 1987 to 2002. Results show that the total area of the wetland reduces dramatically compared to 1987, the total area of wetland reduces by 19.18%, the number of the patches in 2002 increases by 21.17%, the density increases by 50%, and the total perimeter increases by 1,290,491 m. Disturbed by human activities, landscape diversity index decreases from 1.1740 in 1987 to 0.9803 in 2002. During the last 20 years, the total area of the rice wetland increases, while the others decrease. Among those, the area of the bulrush wetland decreases most. In 1987, it takes 0.5% of the total area, but in 2002, it only takes 0.11%. The interpenetration of human influences on the wetland natural system has been long and close. The impacts of human activities on the spatial pattern of the wetland landscape along the Yellow River in Henan from 1987 to 2002 are great.展开更多
The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scou...The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scouring and silting trends of the lower Yellow River. Based on water and sediment data from the lower Yellow River during the period from 1960 to 2012, and using a statistical method, this paper analyzed the sediment transport in sediment-laden flows with different discharges and sediment concentrations in the lower Yellow River. The results show that rational water-sediment regulation is necessary to avoid silting in the later sediment-retaining period. The combination of 3 000 m^3/s 〈 Q 〈 4 000 m^3/s and 20 kg/m^3 〈 S 〈 60 kg/m^3 (where Q is the discharge and S is the sediment concentration) at the Huayuankou section is considered an optimal combination for equilibrium sediment transport in the lower Yellow River over a long period of time.展开更多
The annual and seasonal trends in pan evaporation in the lower Yellow River Basin based on quality-controlled data from 10 meteorological stations in 1961-2010 are analyzed. The causes for the changes in annual and se...The annual and seasonal trends in pan evaporation in the lower Yellow River Basin based on quality-controlled data from 10 meteorological stations in 1961-2010 are analyzed. The causes for the changes in annual and seasonal pan evaporation are also discussed. The results suggest that, despite the 1.15~C increasing in annual mean surface air temperature over the past 50 years (0.23°C per decade), the annual pan evaporation has steadily declined by an average rate of-7.65 mm per year. By comparison, this change is greater than those previously reported in China. Significant decreasing trends in annual pan evaporation have been observed at almost all stations. As a whole, seasonal pan evaporation decreased significantly, especially in summer, whereas seasonal temperature increased significantly, except in summer. Thus, the pan evaporation paradox exists in the lower Yellow River Basin. The trend analysis of other meteorological factors indicates significant decrease in sunshine duration and wind speed, but no significant variations in precipitation and relative humidity at annual and seasonal time scales. By examining the relationship between precipitation and pan evaporation, it did not show a concurrent decrease in pan evaporation and increase in precipitation. The partial correlation analysis discovered that the primary cause of decrease in annual and seasonal pan evaporation is the decrease in wind speed. A further examination using a stepwise regression shows that decrease in wind speed and sunshine duration, and increase in mean temperature axe likely to be the main meteorological factors affecting the annual and seasonal pan evaporation in the lower Yellow River Basin over the past 50 years.展开更多
Using a neutron activation analysis technique, which involves gamma-spectrometry with a Ge(Li) detector coupled to a S40 multichannel analyzer and interfaced to a PDP-11 computer, we determined thirty-eight elements i...Using a neutron activation analysis technique, which involves gamma-spectrometry with a Ge(Li) detector coupled to a S40 multichannel analyzer and interfaced to a PDP-11 computer, we determined thirty-eight elements in sediments from the lower reach (downstream from Jinan) and estuary of Huanghe. The results are discussed in this paper.From inter-elemental correlations, it ts found that a large number of metals (Mn.As, Co, Cr.Cs, Rb, Sc, Ti, Ta, V and Zn) correlate positively with Fe. Ba and Ca correlate positively with Al. Whereas some elements (e. g. , Ti and lanthanides) show no correlation with either Fe or Al. On the other hand, Hf and Zr show a negative correlation with Fe. Elements which tend to be scavenged by Fe and Al colloids or suspended particles are enriched in sediments at the Huanghe Estuary relative to its lower reach. On the other hand, the contents of some elements (e. g. , Zr,Hf,U, Ba, etc. )are higher in sediments from the lower reach of Huanghe than in the estuarine sediments,which may be related to the sorting during deposition of source materials. On the basis of their chemical property and geochemical behavior, the 38 elements we studied are classified into seven groups. (1) weathering-prone elements,group A:K,Rb, Cs and Na; (2) weathering-prone elements, group B:Mg, Ca, Ba and Al; (3) transition elements:Fe, Co.Ni, Zn, As, Sb, Mn, Cr, W,Mo,V, Ta and Sc; (4) rare elements:group A (Zr and Hf) and group B (Ti); (5) rare earth elements:the lanthanides; (6) halogens: Cl and Br; amd (7) natural radioactive elements:U and Th. The basis for this classification is discussed and we emphasize that geochemical associations of elements in the natural environment are not necessarily in accord with their chemical properties as dictated by position at the periodic table.展开更多
The issue on water environmental degradation in the source area of the Yellow River has been one of very serious ecological and socially economic problems. The temporal-spatial changes of water environment led to the ...The issue on water environmental degradation in the source area of the Yellow River has been one of very serious ecological and socially economic problems. The temporal-spatial changes of water environment led to the decreasing of land capacity and river disconnecting. The status of water environmental degradation in this paper was analyzed based on the data and field investigation. The results indicated that the surface water area in the region has obviously decreased owing to the climate changes and human irrational use of water resources and the continuous lowering of the regional groundwater table and the steadily decreasing tendency of the flow rate in the source areas of the Yellow River.展开更多
The clear identification and quantification of the factors affecting groundwater systems is crucial for protecting groundwater resources and ensuring safety in agricultural production.The Lower Yellow River(LYR)is a s...The clear identification and quantification of the factors affecting groundwater systems is crucial for protecting groundwater resources and ensuring safety in agricultural production.The Lower Yellow River(LYR)is a suspended river that replenishes groundwater continuously due to clear differences in the water head,especially in the Xinxiang section.Since its construction,the Xiaolangdi Reservoir has reversed the LYR’s deposition.To accurately determine the factors influencing the groundwater level(GWL),the study area was divided into five subzones based on hydrogeology.A dynamic factor model(DFM),variational mode decomposition(VMD),and a multiple linear regression model were used to identify and quantify the factors influencing the GWL.The impact of the suspended river on the groundwater before and after the construction of the Xiaolangdi Reservoir was examined.The results show that:(1)The rate of decrease in the GWL was 8.53×10^(–4)m/month,and the rate of decrease in the Yellow River water level(RWL)was 4.63×10^(–4)m/month.(2)Mountain front recharge(MFR)(scale=3 months)and precipitation(scale=9 months)were the dominant factors in subzones I and II,accounting for more than 40%of the fluctuation in the GWL.Subzone III was dominated by exploitation(scale=7 months)and precipitation(scale=12months),accounting for 28.43%,and 23.44%of changes in the GWL,respectively.In subzone IV,agricultural irrigation(scale=12 months)was the major factor,accounting for32.47%of GWL changes,while in subzone V,the RWL(scale=12 months)accounted for52.52%of these changes.(3)The Xiaolangdi Reservoir has increased the lateral seepage of the suspended river and altered the inter-annual distribution.The results of this study can provide a valuable reference for controlling groundwater overexploitation and ensuring water supply security.展开更多
Serving as one of the largest rivers in terms of both sediment and organic carbon transport fluxes in the world,the Yellow River plays a crucial role in regional biogeochemical process as well as in the global carbon ...Serving as one of the largest rivers in terms of both sediment and organic carbon transport fluxes in the world,the Yellow River plays a crucial role in regional biogeochemical process as well as in the global carbon cycle.However,although a large number of studies have been carried out on the flux,composition,source and seasonal variation of total particulate organic carbon in the Yellow River so far,studies on molecular biomarkers at different spatial and temporal scales are still scarce.In this study,we focus on the molecular and hydrogen isotopic properties of leaf wax n-alkanes among different types of samples which obtained from different seasons(flood vs.non-flood)along the lower Yellow River.The molecular distribution of n-alkanes show that the riparian topsoils are subject to inputs from the overlying vegetation,while the suspended sediments from the flood season are characterized by the mixing of soil materials which originate from various stratigraphy with different ages on the Chinese Loess Plateau.Due to the contrasting hydrodynamic conditions,the n-alkanes in suspended sediments also show distinct molecular composition between flood and non-flood seasons.Additionally,considering the effect of climatic factors,the proportion of monocots in flood-season suspended sediments is calculated from a semi-quantitative perspective using δ^(2)H_(wax).Our findings may bring to light new considerations for the interpretation of leaf wax proxies in studies of organic matter sources of Yellow River.展开更多
The middle and lower reaches of the Yangtze River,a primary region for freshwater lakes in China,have undergone significant transformations throughout the Holocene.These changes,driven by factors such as sea-level ris...The middle and lower reaches of the Yangtze River,a primary region for freshwater lakes in China,have undergone significant transformations throughout the Holocene.These changes,driven by factors such as sea-level rise,climate change,and human activities,have led to the progressive elevation of water levels in this area.As a result,a floodplain has emerged,characterized by the formation of numerous shallow lakes along the river course.However,the pattern of water-level changes in the main channel of the Yangtze River during the Holocene remains unclear.This gap in knowledge poses challenges for understanding sediment transport dynamics,the interactions between the river and its adjacent lakes,and the prevention and control of flood disasters in the Yangtze River basin.To shed light on these issues,our study compiled data on the surface elevation and water depth of 81 lakes in the mid-lower reaches of the Yangtze River basin.Additionally,we analyzed historical water-level records from the 1900s to the 1970s at eight gauging stations from Shashi to Jiangyin along the river’s main stream.Our findings reveal that,particularly along the Jingjiang section,the basal elevation of most lakes is lower than the Yangtze River’s water level during the dry season.Conversely,the water level of the main stream exceeds that of both the floodplain and the lakes enclosed by the Jingjiang embankment.In the tidal reach,especially within the Taihu Lake basin,the basal elevation of lakes typically falls below sea level.Meanwhile,lakes located along the section from Chenglingji to Wuhu exhibit basal elevations that correspond with the Yangtze River’s annual average and dry season water levels.Given the widespread presence of lakes along the middle and lower reaches of the Yangtze River,our study introduces a new proxy for reconstructing the mean water level of the mid-lower Yangtze River in the Holocene.By analyzing sediments from Nanyi Lake and Chenyao Lake in the lower Yangtze River,we attempted to reconstruct the water level of the Yangtze River’s main channel since 8 ka BP.展开更多
基金National Natural Science Foundation of China, No. 40331013 No.90502009 No. 40571007, No. 40701021
文摘Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archives of the Qing Dynasty, the precipitation cycles are analyzed by wavelet analysis and the possible climate forcings, which drive the precipitation changes, are explored. The results show that: the precipitation in the middle and lower reaches of the Yellow River has inter-annual and inter-decadal oscillations like 2-4a, quasi-22a and 70-80a. The 2-4a cycle is linked with El Nino events, and the precipitation is lower than normal year in the occurrence of the El Nino year or the next year; for the quasi-22a and the 70-80a cycles, Wolf Sun Spot Numbers and Pacific Decadal Oscillation (PDO) coincide with the two cycle signals. However, on a 70-80a time scale, the coincidence between solar activity and precipitation is identified before 1830, and strong (weak) solar activity is generally correlated to the dry (wet) periods; after 1830, the solar activity changes to 80-100a quasi-century long oscillation, and the adjusting action to the precipitation is becoming weaker and weaker; the coincidence between PDO and precipitation is shown in the whole time series. Moreover, in recent 100 years, PDO is becoming a pace-maker of the precipitation on the 70-80a time scale.
基金Supported by Science Research Special Item of the Public Welfare Industry,Ministry of Water Resources(200901020)
文摘[ Objective] The research aimed to study community structure of the phytoplankton and its relationship with environmental factor in lower reaches of the Yellow River. [ Method] From April to June in 2011, phytoplankton was conducted qualitative and quantitative researches in Lijin in lower reaches of the Yellow River. By combining population characteristics of the phytoplankton, its'relationship with environmental factor was dis- cussed. [ Result] 114 species and 5 phylum of phytoplankton were observed in the whole river section. The abundance of phytoplankton was 0.90 ×104 -303.35×104 ind/m3, and mean was 27.20 ×104 ind/m3. The biomass of phytoplankton was 0.008-5.890 mg/m3, and mean was 0.641 mg/m3. Shannon-Weaver diversity index, Pielou evenness index and Simpson's diversity index were respectively 1.59, 0.36 and 0.55. SPSS data analysis indicated that transparency was the uppermost environmental factor affected phytoplankton abundance. Phytoplankton abundance had posi- tive correlation with transparency, and the regression equation was y= -393.8 +115.5×-11 .lx2 +0.35x3(n=18, R2 =0.952, F=92.665, P〈0.01 ). [ Conclusion] The community structure of phytoplankton was unstable, and transparency was the uppermost environmental factor affected phyto- plankton abundance in lower reaches of the Yellow River.
基金The State Science Research Plan (Grant no.96-920-09-01)
文摘Based on the analysis of hanging rivers' actuality in the lower Yellow River and researches related to the evaluation of dike breach risks,it is put forward that the influencing factors of dike beach risks in the lower Yellow River should involve four aspects,the flow and sediment movement,the regional crustal stability,the variation of river regime and the stability of river dikes.With this,the evaluation indexes system of dike breach risks is established,and with the support of geographic information systems technology,the model of multi-hierarchical fuzzy comprehensive judgment is applied to estimate the dike beach risks of the hanging rivers in the lower Yellow River under different flood conditions.The evaluation results of dike breach risks show the following distributing regularities of dike breach risks in the lower Yellow River:(1) Dike breach risks increase with the increase of the flood.(2) Dike breach risks decrease with the changes of river patterns along the channel.(3) There are great risks of dike breach in the wandering reaches,and it is relatively higher in the south bank than in the north in wandering reaches.(4) There is a higher dike breach risk in the north bank than in the south in winding reaches.Simultaneously,the evaluation results manifest that the evaluation indexes system established from the flow and sediment movement,the regional crustal stability,the variation of river regime and the stability of river dikes can represent the actual situation of the lower Yellow River more comprehensively.The application of multihierarchical fuzzy comprehensive judgment can preferably resolve the problem of hanging river dike breach,which has numerous influencing factors and complicated functionary mechanisms.The applications of geographic information systems technology with powerful spatial analysis functions make dike beach risks quantificationally displayed in different spatial positions,and reflect the differences of dike beach risks in different spatial positions of the channel in the lower Yellow River.
基金supported by the National Key Research and Development Program of China(No.2018YFC1407 601)the National Natural Science Foundation of China(No.41176064)
文摘In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analyzed their specific amino acids(AA),DOC,POC,and bacteria abundance.Summarized by 14 specific AA,the total hydrolysable AA(THAA),particulate AA(PAA),and sediment AA(SAA)varied in ranges of 2.29-9.05μmol L^-1,5.22-22.96μmol L^-1,and 81.7-137.19μg g^-1 dry weight.After the regulation,dissolved free AA(DFAA)decreased by 29%while DCAA increased by 72%.These variations suggested that DFAA were further degraded,while DCAA molecules were further activated.Meanwhile,PAA increased almost 4 times as many as those before regulation,and SAA increased as well.After regulation,the amounts of bioactive amino acids(Asp,Glu and Gly)increased in THAA but decreased in PAA,with little changes in SAA.The ratios of Asp/Gly in different phases increased after regulation,indicating the AA contributions were promoted by calcareous organisms rather than by siliceous organisms.Multiple correlation analysis showed that PAA was primary representatives of AA and organic carbon,followed by DCAA and POC.Moreover,bacterial reproduction played a key role in shaping the AA compositions and properties,followed by the redox condition and acid-base balance.The results of this study provided a clear evidence for the effects of water-sediment regulation on regional biogeochemistry of organic carbon in the middle-lower Yellow River.
基金The State Scientific Research Plan, No.96-920-09-01
文摘The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "hanging river". According to the characteristics of the dike-break flood of the Yellow River, this paper has simulated, in six different scenarios, the dike-break flood routing by inputting the terrain data, typical historical flood data and land use data of study area to two-dimensional unsteady flow model. The results show that: firstly, the routing process of flood will occupy other rivers on the way and return to the rivers after reaching the lower reaches; secondly, in the same river reach, flood inundating area of north band is bigger than that at corresponding location of south bank under the same historical flood; thirdly, it is different in the degree of flood inundation in different regions due to different geographical locations in flood plain; fourthly, the area of mainstream where flood is deep and flow velocity is quick is relatively smaller, but the area of non-mainstream, where flood is shallow and flow velocity is slow, is relatively big; and finally, the possible influenced area of the dike-break flood is 141,948 km^2.
文摘It is very important to study the archaeological culture and origin of civilization in ancient China.The changes of the channels in the lower reaches of the Yellow River in the prehistoric period are part of the natural environmental background of the development of the ancient civilization in that area to be explored.This paper presents a series of legends,indications,scientific evidence,and macroscopic geographical background information of the evolution in the lower reaches of the Yellow River during the Longshan period.At first the river flowed from Northern Henan and Hebei to southwestern Shandong Province and Northern Anhui–Jiangsu provinces,and the mainstream of the Yellow River changed from the southeast to return to the north and flowed into the Bohai Sea in the late Longshan Period.During this period,floods were frequent.Various ethnic groups in the northern China plains suffered natural disasters and made great migrations which also contributed to the ethnic exchanges and integration.The people of the Central Plains made more dynamic adjustments in the relationship between mankind and the land by primitively escaping from the water and self–defensively controlling the rivers then to maintaining the local ecological environment by large–scale flood control measures,which promoted the settlement of Shandong,Henan,Jiangsu and Anhui provinces,the urban cultural development,and social evolution.Based on these events,the culture symbol of Dayu's Flood Control could be formed.
基金Human Geography provincial keystone subject of Henan University
文摘By using GIS and remote sensing techniques, the paper discusses how human activities have changed along the Yellow River in Henan province, China and how these altered activities have influenced the wetland landscape pattern change from 1987 to 2002. Results show that the total area of the wetland reduces dramatically compared to 1987, the total area of wetland reduces by 19.18%, the number of the patches in 2002 increases by 21.17%, the density increases by 50%, and the total perimeter increases by 1,290,491 m. Disturbed by human activities, landscape diversity index decreases from 1.1740 in 1987 to 0.9803 in 2002. During the last 20 years, the total area of the rice wetland increases, while the others decrease. Among those, the area of the bulrush wetland decreases most. In 1987, it takes 0.5% of the total area, but in 2002, it only takes 0.11%. The interpenetration of human influences on the wetland natural system has been long and close. The impacts of human activities on the spatial pattern of the wetland landscape along the Yellow River in Henan from 1987 to 2002 are great.
基金supported by the National Natural Science Foundation of China(Grants No.51039004 and No.51079055)the High-Level Personnel Research Start-Up Funds of North China University of Water Resources and Electric Power(Grant No.201403)the Science and Technology Research Project of the Education Department of Henan Province(Grant No.14A570001)
文摘The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab- lishing behaviors are appearing. A physical model test was used to forecast the scouring and silting trends of the lower Yellow River. Based on water and sediment data from the lower Yellow River during the period from 1960 to 2012, and using a statistical method, this paper analyzed the sediment transport in sediment-laden flows with different discharges and sediment concentrations in the lower Yellow River. The results show that rational water-sediment regulation is necessary to avoid silting in the later sediment-retaining period. The combination of 3 000 m^3/s 〈 Q 〈 4 000 m^3/s and 20 kg/m^3 〈 S 〈 60 kg/m^3 (where Q is the discharge and S is the sediment concentration) at the Huayuankou section is considered an optimal combination for equilibrium sediment transport in the lower Yellow River over a long period of time.
基金This work was supported by the Yellow River Engineering Consulting Co.,Ltd.(Grant No.2019GS007-WW03/20)the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(Grant No.SKL2020ZY10).
基金supported by the Climate Change Science Foundation of China Meteorological Administration(No.CCSF2011-1)
文摘The annual and seasonal trends in pan evaporation in the lower Yellow River Basin based on quality-controlled data from 10 meteorological stations in 1961-2010 are analyzed. The causes for the changes in annual and seasonal pan evaporation are also discussed. The results suggest that, despite the 1.15~C increasing in annual mean surface air temperature over the past 50 years (0.23°C per decade), the annual pan evaporation has steadily declined by an average rate of-7.65 mm per year. By comparison, this change is greater than those previously reported in China. Significant decreasing trends in annual pan evaporation have been observed at almost all stations. As a whole, seasonal pan evaporation decreased significantly, especially in summer, whereas seasonal temperature increased significantly, except in summer. Thus, the pan evaporation paradox exists in the lower Yellow River Basin. The trend analysis of other meteorological factors indicates significant decrease in sunshine duration and wind speed, but no significant variations in precipitation and relative humidity at annual and seasonal time scales. By examining the relationship between precipitation and pan evaporation, it did not show a concurrent decrease in pan evaporation and increase in precipitation. The partial correlation analysis discovered that the primary cause of decrease in annual and seasonal pan evaporation is the decrease in wind speed. A further examination using a stepwise regression shows that decrease in wind speed and sunshine duration, and increase in mean temperature axe likely to be the main meteorological factors affecting the annual and seasonal pan evaporation in the lower Yellow River Basin over the past 50 years.
文摘Using a neutron activation analysis technique, which involves gamma-spectrometry with a Ge(Li) detector coupled to a S40 multichannel analyzer and interfaced to a PDP-11 computer, we determined thirty-eight elements in sediments from the lower reach (downstream from Jinan) and estuary of Huanghe. The results are discussed in this paper.From inter-elemental correlations, it ts found that a large number of metals (Mn.As, Co, Cr.Cs, Rb, Sc, Ti, Ta, V and Zn) correlate positively with Fe. Ba and Ca correlate positively with Al. Whereas some elements (e. g. , Ti and lanthanides) show no correlation with either Fe or Al. On the other hand, Hf and Zr show a negative correlation with Fe. Elements which tend to be scavenged by Fe and Al colloids or suspended particles are enriched in sediments at the Huanghe Estuary relative to its lower reach. On the other hand, the contents of some elements (e. g. , Zr,Hf,U, Ba, etc. )are higher in sediments from the lower reach of Huanghe than in the estuarine sediments,which may be related to the sorting during deposition of source materials. On the basis of their chemical property and geochemical behavior, the 38 elements we studied are classified into seven groups. (1) weathering-prone elements,group A:K,Rb, Cs and Na; (2) weathering-prone elements, group B:Mg, Ca, Ba and Al; (3) transition elements:Fe, Co.Ni, Zn, As, Sb, Mn, Cr, W,Mo,V, Ta and Sc; (4) rare elements:group A (Zr and Hf) and group B (Ti); (5) rare earth elements:the lanthanides; (6) halogens: Cl and Br; amd (7) natural radioactive elements:U and Th. The basis for this classification is discussed and we emphasize that geochemical associations of elements in the natural environment are not necessarily in accord with their chemical properties as dictated by position at the periodic table.
文摘The issue on water environmental degradation in the source area of the Yellow River has been one of very serious ecological and socially economic problems. The temporal-spatial changes of water environment led to the decreasing of land capacity and river disconnecting. The status of water environmental degradation in this paper was analyzed based on the data and field investigation. The results indicated that the surface water area in the region has obviously decreased owing to the climate changes and human irrational use of water resources and the continuous lowering of the regional groundwater table and the steadily decreasing tendency of the flow rate in the source areas of the Yellow River.
基金The Foundation of High-level Talents of Zhengzhou University,No.13432340370,No.134-32340364,No.135-32340122Project of the Ecological Environment Monitoring and Safety Center of Henan Province,No.SJCAQ-HT-2023-036。
文摘The clear identification and quantification of the factors affecting groundwater systems is crucial for protecting groundwater resources and ensuring safety in agricultural production.The Lower Yellow River(LYR)is a suspended river that replenishes groundwater continuously due to clear differences in the water head,especially in the Xinxiang section.Since its construction,the Xiaolangdi Reservoir has reversed the LYR’s deposition.To accurately determine the factors influencing the groundwater level(GWL),the study area was divided into five subzones based on hydrogeology.A dynamic factor model(DFM),variational mode decomposition(VMD),and a multiple linear regression model were used to identify and quantify the factors influencing the GWL.The impact of the suspended river on the groundwater before and after the construction of the Xiaolangdi Reservoir was examined.The results show that:(1)The rate of decrease in the GWL was 8.53×10^(–4)m/month,and the rate of decrease in the Yellow River water level(RWL)was 4.63×10^(–4)m/month.(2)Mountain front recharge(MFR)(scale=3 months)and precipitation(scale=9 months)were the dominant factors in subzones I and II,accounting for more than 40%of the fluctuation in the GWL.Subzone III was dominated by exploitation(scale=7 months)and precipitation(scale=12months),accounting for 28.43%,and 23.44%of changes in the GWL,respectively.In subzone IV,agricultural irrigation(scale=12 months)was the major factor,accounting for32.47%of GWL changes,while in subzone V,the RWL(scale=12 months)accounted for52.52%of these changes.(3)The Xiaolangdi Reservoir has increased the lateral seepage of the suspended river and altered the inter-annual distribution.The results of this study can provide a valuable reference for controlling groundwater overexploitation and ensuring water supply security.
基金supported by the Chinese Academy of Sciences(Grant No.ZDBSLY-DQC033)the National Natural Science Foundation of China(Grant Nos.42073017&42030512)。
文摘Serving as one of the largest rivers in terms of both sediment and organic carbon transport fluxes in the world,the Yellow River plays a crucial role in regional biogeochemical process as well as in the global carbon cycle.However,although a large number of studies have been carried out on the flux,composition,source and seasonal variation of total particulate organic carbon in the Yellow River so far,studies on molecular biomarkers at different spatial and temporal scales are still scarce.In this study,we focus on the molecular and hydrogen isotopic properties of leaf wax n-alkanes among different types of samples which obtained from different seasons(flood vs.non-flood)along the lower Yellow River.The molecular distribution of n-alkanes show that the riparian topsoils are subject to inputs from the overlying vegetation,while the suspended sediments from the flood season are characterized by the mixing of soil materials which originate from various stratigraphy with different ages on the Chinese Loess Plateau.Due to the contrasting hydrodynamic conditions,the n-alkanes in suspended sediments also show distinct molecular composition between flood and non-flood seasons.Additionally,considering the effect of climatic factors,the proportion of monocots in flood-season suspended sediments is calculated from a semi-quantitative perspective using δ^(2)H_(wax).Our findings may bring to light new considerations for the interpretation of leaf wax proxies in studies of organic matter sources of Yellow River.
基金supported by the National Natural Science Foundation of China(Grant No.41972194)the Study on the Origin of Chinese Civilization in Jiangsu Province。
文摘The middle and lower reaches of the Yangtze River,a primary region for freshwater lakes in China,have undergone significant transformations throughout the Holocene.These changes,driven by factors such as sea-level rise,climate change,and human activities,have led to the progressive elevation of water levels in this area.As a result,a floodplain has emerged,characterized by the formation of numerous shallow lakes along the river course.However,the pattern of water-level changes in the main channel of the Yangtze River during the Holocene remains unclear.This gap in knowledge poses challenges for understanding sediment transport dynamics,the interactions between the river and its adjacent lakes,and the prevention and control of flood disasters in the Yangtze River basin.To shed light on these issues,our study compiled data on the surface elevation and water depth of 81 lakes in the mid-lower reaches of the Yangtze River basin.Additionally,we analyzed historical water-level records from the 1900s to the 1970s at eight gauging stations from Shashi to Jiangyin along the river’s main stream.Our findings reveal that,particularly along the Jingjiang section,the basal elevation of most lakes is lower than the Yangtze River’s water level during the dry season.Conversely,the water level of the main stream exceeds that of both the floodplain and the lakes enclosed by the Jingjiang embankment.In the tidal reach,especially within the Taihu Lake basin,the basal elevation of lakes typically falls below sea level.Meanwhile,lakes located along the section from Chenglingji to Wuhu exhibit basal elevations that correspond with the Yangtze River’s annual average and dry season water levels.Given the widespread presence of lakes along the middle and lower reaches of the Yangtze River,our study introduces a new proxy for reconstructing the mean water level of the mid-lower Yangtze River in the Holocene.By analyzing sediments from Nanyi Lake and Chenyao Lake in the lower Yangtze River,we attempted to reconstruct the water level of the Yangtze River’s main channel since 8 ka BP.