s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure re...s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s.展开更多
We have investigated the resonant propagation of femtosecond laser pulse in 4-trans-[p-(N, N-Di-n-butylamino)- p-stilbenyl vinyl] pyridine medium with permanent dipole moments. The electronic structures and paramete...We have investigated the resonant propagation of femtosecond laser pulse in 4-trans-[p-(N, N-Di-n-butylamino)- p-stilbenyl vinyl] pyridine medium with permanent dipole moments. The electronic structures and parameters for the compound have been calculated by using density functional theory. In the optical regime, there is one charge-transfer state, and the molecule can thus be simplified as a two-level system. Both the one- and two-photon transitions occur between the ground and charge-transfer states. The numerical results show that the permanent dipole moments have an obvious effect on the propagation of the ultrashort pulse laser. The ideal self-induced transparency disappears for 2π pulse, and second harmonic spectral components occur significantly due to the two-photon absorption process. For the 6π pulse, continuum frequency generation is produced and a shorter duration pulse in time domain with 465 as is obtained.展开更多
This paper presents a new class of semiconductor integrated sensor which consists of sensitive components and flip flop circuit. The sensors have high sensitivity and digital output. This paper describes the operatin...This paper presents a new class of semiconductor integrated sensor which consists of sensitive components and flip flop circuit. The sensors have high sensitivity and digital output. This paper describes the operating principle and structure of the sensor. And noise effect on characteristics of the sensor is analysed in detail. The modulated effect of the triangular wave voltage is quantified. As an example, an integrated pressure sensor is introduced and the experimental results agree with the theoretical analyses.展开更多
A novel general purpose sense amplifier based flip flop is proposed.Compared to other flip flops,the proposed flip flop has faster operating speed under the approximately same power consumption,and needs fewer tr...A novel general purpose sense amplifier based flip flop is proposed.Compared to other flip flops,the proposed flip flop has faster operating speed under the approximately same power consumption,and needs fewer transistors and consumes smaller area.Moreover,it eliminates the glitch problem.By using pseudo PMOS dynamic technique,its performance is further improved.展开更多
An 1∶8 frequency divider is designed and realized in a 0 35μm standard CMOS technology.The chip consists of three stages of 1∶2 divider cells,which are constructed with source couple logic (SCL) flip flops.By rev...An 1∶8 frequency divider is designed and realized in a 0 35μm standard CMOS technology.The chip consists of three stages of 1∶2 divider cells,which are constructed with source couple logic (SCL) flip flops.By revising the traditional topology of SCL flip flop,a divider with better performances is got.The results of measurement show that the whole chip achieves the frequency division at more than 8 5GHz.Each 1∶2 divider consumes about 11mW from a 3 3V supply.The divider can be used in RF and optic fiber transceivers and other high speed systems.展开更多
Digital design of a digital signal processor involves accurate and high-speed mathematical computation units.DSP units are one of the most power consuming and memory occupying devices.Multipliers are the common buildi...Digital design of a digital signal processor involves accurate and high-speed mathematical computation units.DSP units are one of the most power consuming and memory occupying devices.Multipliers are the common building blocks in most of the DSP units which demands low power and area constraints in the field of portable biomedical devices.This research works attempts multiple power reduction technique to limit the power dissipation of the proposed LUT multiplier unit.A lookup table-based multiplier has the advantage of almost constant area requirement’s irrespective to the increase in bit size of multiplier.Clock gating is usually used to reduce the unnecessary switching activities in idle circlet components.A clock tree structure is employed to enhance the SRAM based lookup table memory architecture.The LUT memory access operation is sequential in nature and instead of address decoder a ring counter is used to scan the memory contents and gated driver tree structure is implemented to control the clock and data switching activities.The proposed algorithm yields 20%of power reduction than existing.展开更多
Convolutional neural networks continually evolve to enhance accuracy in addressing various problems,leading to an increase in computational cost and model size.This paper introduces a novel approach for pruning face r...Convolutional neural networks continually evolve to enhance accuracy in addressing various problems,leading to an increase in computational cost and model size.This paper introduces a novel approach for pruning face recognition models based on convolutional neural networks.The proposed method identifies and removes inefficient filters based on the information volume in feature maps.In each layer,some feature maps lack useful information,and there exists a correlation between certain feature maps.Filters associated with these two types of feature maps impose additional computational costs on the model.By eliminating filters related to these categories of feature maps,the reduction of both computational cost and model size can be achieved.The approach employs a combination of correlation analysis and the summation of matrix elements within each feature map to detect and eliminate inefficient filters.The method was applied to two face recognition models utilizing the VGG16 and ResNet50V2 backbone architectures.In the proposed approach,the number of filters removed in each layer varies,and the removal process is independent of the adjacent layers.The convolutional layers of both backbone models were initialized with pre-trained weights from ImageNet.For training,the CASIA-WebFace dataset was utilized,and the Labeled Faces in the Wild(LFW)dataset was employed for benchmarking purposes.In the VGG16-based face recognition model,a 0.74%accuracy improvement was achieved while reducing the number of convolution parameters by 26.85%and decreasing Floating-point operations per second(FLOPs)by 47.96%.For the face recognition model based on the ResNet50V2 architecture,the ArcFace method was implemented.The removal of inactive filters in this model led to a slight decrease in accuracy by 0.11%.However,it resulted in enhanced training speed,a reduction of 59.38%in convolution parameters,and a 57.29%decrease in FLOPs.展开更多
Based on single Cesium atoims trapped in a 1064 nm microscopic optical trap we have exhibited a single qubit encoded in the Cesium "clock states". The single qubit initialization, detection and the fast state rotati...Based on single Cesium atoims trapped in a 1064 nm microscopic optical trap we have exhibited a single qubit encoded in the Cesium "clock states". The single qubit initialization, detection and the fast state rotation with high efficiencies are demonstrated and this state manipulation is crucial for quantmn information processing. The ground ~ates Rabi flopping rate of 229.0 ± 0.6 kHz is realized hy a two-photon Raman process. A clock states dephasing time of 3.0 ± 0.7 ms is measured, while all irreversible homogeneous dephasing time of 124 ± 17 ms is achieved by using the spin-echo technique. This well-controlled single atom provides an ideal quantmn qubit and quantmn node for quantum information processing.展开更多
In this paper,we study the global singular symplectic flops related to the following affine hypersurface with cyclic quotient singularities,Vr,b={(x,y,z,t)∈C4|xy-z2r+t2=0}/μr(a,-a,b,0),r 2,where b=1 appears in Mori...In this paper,we study the global singular symplectic flops related to the following affine hypersurface with cyclic quotient singularities,Vr,b={(x,y,z,t)∈C4|xy-z2r+t2=0}/μr(a,-a,b,0),r 2,where b=1 appears in Mori’s minimal model program and b=1 is a new class of singularities in symplectic birational geometry.We prove that two symplectic 3-orbifolds which are singular flops to each other have isomorphic Ruan cohomology rings.The proof is based on the symplectic cutting argument and virtual localization technique.展开更多
This is a survey paper about a selection of results in complex algebraic geometry that appeared in the recent and less recent litterature,and in which rational homogeneous spaces play a prominent role.This selection i...This is a survey paper about a selection of results in complex algebraic geometry that appeared in the recent and less recent litterature,and in which rational homogeneous spaces play a prominent role.This selection is largely arbitrary and mainly refiects the interests of the author.展开更多
The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi_(2)T...The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi_(2)Te_(4).By using low-temperature scanning tunneling microscopy and spectroscopy,we observed a localized bound state around the Mn-Bi antisite defect at the Teterminated surface of the antiferromagnetic topological insulator MnBi_(2)Te_(4).When applying a magnetic field perpendicular to the surface(Bz)from–1.5 to 3.0 T,the bound state shifts linearly to a lower energy with increasing Bz,which is attributed to the Zeeman effect.Remarkably,when applying a large range of Bz from–8.0 to 8.0 T,the magnetic field induced reorientation of surface magnetic moments results in an abrupt jump in the local density of states(LDOS),which is characterized by LDOSchange-ratio■quantitatively.Interestingly,two asymmetric critical field,–2.0 and 4.0 T determined by the two peaks in■are observed,which is consistent with simulated results according to a Mills-model,describing a surface spin flop transition(SSF).Our results provide a new flatform for studying the interplay between magnetic order and topological phases in magnetic topological materials.展开更多
文摘s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s.
基金Project supported by the Shandong Natural Science Foundation (Grant No Y2004A08), the University Doctoral Subject Special Science and Technology Foundation (Grant No 20040445001) and The Key Laboratory for High Intensity 0ptics of Shanghai Institute of 0ptics and Fine Mechanics, Chinese Academy of Sciences.
文摘We have investigated the resonant propagation of femtosecond laser pulse in 4-trans-[p-(N, N-Di-n-butylamino)- p-stilbenyl vinyl] pyridine medium with permanent dipole moments. The electronic structures and parameters for the compound have been calculated by using density functional theory. In the optical regime, there is one charge-transfer state, and the molecule can thus be simplified as a two-level system. Both the one- and two-photon transitions occur between the ground and charge-transfer states. The numerical results show that the permanent dipole moments have an obvious effect on the propagation of the ultrashort pulse laser. The ideal self-induced transparency disappears for 2π pulse, and second harmonic spectral components occur significantly due to the two-photon absorption process. For the 6π pulse, continuum frequency generation is produced and a shorter duration pulse in time domain with 465 as is obtained.
文摘This paper presents a new class of semiconductor integrated sensor which consists of sensitive components and flip flop circuit. The sensors have high sensitivity and digital output. This paper describes the operating principle and structure of the sensor. And noise effect on characteristics of the sensor is analysed in detail. The modulated effect of the triangular wave voltage is quantified. As an example, an integrated pressure sensor is introduced and the experimental results agree with the theoretical analyses.
文摘A novel general purpose sense amplifier based flip flop is proposed.Compared to other flip flops,the proposed flip flop has faster operating speed under the approximately same power consumption,and needs fewer transistors and consumes smaller area.Moreover,it eliminates the glitch problem.By using pseudo PMOS dynamic technique,its performance is further improved.
文摘An 1∶8 frequency divider is designed and realized in a 0 35μm standard CMOS technology.The chip consists of three stages of 1∶2 divider cells,which are constructed with source couple logic (SCL) flip flops.By revising the traditional topology of SCL flip flop,a divider with better performances is got.The results of measurement show that the whole chip achieves the frequency division at more than 8 5GHz.Each 1∶2 divider consumes about 11mW from a 3 3V supply.The divider can be used in RF and optic fiber transceivers and other high speed systems.
文摘Digital design of a digital signal processor involves accurate and high-speed mathematical computation units.DSP units are one of the most power consuming and memory occupying devices.Multipliers are the common building blocks in most of the DSP units which demands low power and area constraints in the field of portable biomedical devices.This research works attempts multiple power reduction technique to limit the power dissipation of the proposed LUT multiplier unit.A lookup table-based multiplier has the advantage of almost constant area requirement’s irrespective to the increase in bit size of multiplier.Clock gating is usually used to reduce the unnecessary switching activities in idle circlet components.A clock tree structure is employed to enhance the SRAM based lookup table memory architecture.The LUT memory access operation is sequential in nature and instead of address decoder a ring counter is used to scan the memory contents and gated driver tree structure is implemented to control the clock and data switching activities.The proposed algorithm yields 20%of power reduction than existing.
文摘Convolutional neural networks continually evolve to enhance accuracy in addressing various problems,leading to an increase in computational cost and model size.This paper introduces a novel approach for pruning face recognition models based on convolutional neural networks.The proposed method identifies and removes inefficient filters based on the information volume in feature maps.In each layer,some feature maps lack useful information,and there exists a correlation between certain feature maps.Filters associated with these two types of feature maps impose additional computational costs on the model.By eliminating filters related to these categories of feature maps,the reduction of both computational cost and model size can be achieved.The approach employs a combination of correlation analysis and the summation of matrix elements within each feature map to detect and eliminate inefficient filters.The method was applied to two face recognition models utilizing the VGG16 and ResNet50V2 backbone architectures.In the proposed approach,the number of filters removed in each layer varies,and the removal process is independent of the adjacent layers.The convolutional layers of both backbone models were initialized with pre-trained weights from ImageNet.For training,the CASIA-WebFace dataset was utilized,and the Labeled Faces in the Wild(LFW)dataset was employed for benchmarking purposes.In the VGG16-based face recognition model,a 0.74%accuracy improvement was achieved while reducing the number of convolution parameters by 26.85%and decreasing Floating-point operations per second(FLOPs)by 47.96%.For the face recognition model based on the ResNet50V2 architecture,the ArcFace method was implemented.The removal of inactive filters in this model led to a slight decrease in accuracy by 0.11%.However,it resulted in enhanced training speed,a reduction of 59.38%in convolution parameters,and a 57.29%decrease in FLOPs.
基金Acknowledgements This work was supported by the National Basic Research Program of China (Grant No. 2012CB921601) and the National Natural Science Foundation of China (Grants Nos. 11125418, 91336107, 61275210, 61227902, and 61121064).
文摘Based on single Cesium atoims trapped in a 1064 nm microscopic optical trap we have exhibited a single qubit encoded in the Cesium "clock states". The single qubit initialization, detection and the fast state rotation with high efficiencies are demonstrated and this state manipulation is crucial for quantmn information processing. The ground ~ates Rabi flopping rate of 229.0 ± 0.6 kHz is realized hy a two-photon Raman process. A clock states dephasing time of 3.0 ± 0.7 ms is measured, while all irreversible homogeneous dephasing time of 124 ± 17 ms is achieved by using the spin-echo technique. This well-controlled single atom provides an ideal quantmn qubit and quantmn node for quantum information processing.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171235,11071176,11071173 and 11221101)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20100181110071)the Fundamental Research Funds for the Central Universities of China (Grant No. SWJTU12BR028)
文摘In this paper,we study the global singular symplectic flops related to the following affine hypersurface with cyclic quotient singularities,Vr,b={(x,y,z,t)∈C4|xy-z2r+t2=0}/μr(a,-a,b,0),r 2,where b=1 appears in Mori’s minimal model program and b=1 is a new class of singularities in symplectic birational geometry.We prove that two symplectic 3-orbifolds which are singular flops to each other have isomorphic Ruan cohomology rings.The proof is based on the symplectic cutting argument and virtual localization technique.
文摘This is a survey paper about a selection of results in complex algebraic geometry that appeared in the recent and less recent litterature,and in which rational homogeneous spaces play a prominent role.This selection is largely arbitrary and mainly refiects the interests of the author.
基金This work is supported by the National Natural Science Foundation of China(Nos.61888102 and 52022105)National Key Research and Development Projects of China(Nos.2018YFA0305800 and 2019YFA0308500)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB30000000 and XDB28000000)CAS Project for Young Scientists in Basic Research(No.YSBR-003)the University of Chinese Academy of Sciences.
文摘The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi_(2)Te_(4).By using low-temperature scanning tunneling microscopy and spectroscopy,we observed a localized bound state around the Mn-Bi antisite defect at the Teterminated surface of the antiferromagnetic topological insulator MnBi_(2)Te_(4).When applying a magnetic field perpendicular to the surface(Bz)from–1.5 to 3.0 T,the bound state shifts linearly to a lower energy with increasing Bz,which is attributed to the Zeeman effect.Remarkably,when applying a large range of Bz from–8.0 to 8.0 T,the magnetic field induced reorientation of surface magnetic moments results in an abrupt jump in the local density of states(LDOS),which is characterized by LDOSchange-ratio■quantitatively.Interestingly,two asymmetric critical field,–2.0 and 4.0 T determined by the two peaks in■are observed,which is consistent with simulated results according to a Mills-model,describing a surface spin flop transition(SSF).Our results provide a new flatform for studying the interplay between magnetic order and topological phases in magnetic topological materials.