Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have...Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.展开更多
In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scannin...In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.展开更多
We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotati...We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotation column. The chosen packing was a honeycomb structure with an aperture diameter of 80 mm, a web thickness of 0.80 mm, a film height of 1000 mm, packed into a 400 mm diameter space, which completely filled the vessel at optimal cost. The column consisted of a modular ring of single-hole hexagonal honeycomb tube packing made from atactic polyproplene (PP-R). The packing was tested in a cyclonic, static micro-bubble flotation column. Computational fluid dynamic modeling was used to analyze the flotation fluid in a honeycomb tube packed flotation column. Our results show that the fluid axial movement was maximized and that the transverse fluid velocities were zero in the vicinity of axial flow. Using the honeycomb tube packing for copper sulfide flotation we observed that the average concentration in the product was increased to 25.41%, from an average feed concentration of 0.729%, with an average recovery of 92.92%. The demands of on-site industrial production were met.展开更多
An experimental study on the axial dispersion of liquid was carried out in a 0.382-m-ID flotation column packed with different structured packings or free of packings. The correlations of axial Peclet numbers with the...An experimental study on the axial dispersion of liquid was carried out in a 0.382-m-ID flotation column packed with different structured packings or free of packings. The correlations of axial Peclet numbers with the liquid and gas superficial Reynolds numbers were developed for various packings. Among the packings tested, it is found that in the column packed with 250Y or 350Y packings the axial dispersion is the lowest. The addition of frother can decrease the axial dispersion. By the simulation analysis of the one-dimension dispersion model of packed flotation column, it is found that small axial dispersion, high collection rate constant and low axial liquid velocity can increase the collection zone recovery.展开更多
基金Projects(61621062,61563015)supported by the National Natural Science Foundation of ChinaProject(2016zzts056)supported by the Central South University Graduate Independent Exploration Innovation Program,China
文摘Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.
基金Projects 2008BAB31B01 supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China50834006 by the National Natural Science Foundation of China
文摘In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.
基金Project 2007AA05Z339 supported by the National High-Tech Research and Development Program of China
文摘We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotation column. The chosen packing was a honeycomb structure with an aperture diameter of 80 mm, a web thickness of 0.80 mm, a film height of 1000 mm, packed into a 400 mm diameter space, which completely filled the vessel at optimal cost. The column consisted of a modular ring of single-hole hexagonal honeycomb tube packing made from atactic polyproplene (PP-R). The packing was tested in a cyclonic, static micro-bubble flotation column. Computational fluid dynamic modeling was used to analyze the flotation fluid in a honeycomb tube packed flotation column. Our results show that the fluid axial movement was maximized and that the transverse fluid velocities were zero in the vicinity of axial flow. Using the honeycomb tube packing for copper sulfide flotation we observed that the average concentration in the product was increased to 25.41%, from an average feed concentration of 0.729%, with an average recovery of 92.92%. The demands of on-site industrial production were met.
基金Supported by the National Natural Science Foundation of China (No. 29806012).
文摘An experimental study on the axial dispersion of liquid was carried out in a 0.382-m-ID flotation column packed with different structured packings or free of packings. The correlations of axial Peclet numbers with the liquid and gas superficial Reynolds numbers were developed for various packings. Among the packings tested, it is found that in the column packed with 250Y or 350Y packings the axial dispersion is the lowest. The addition of frother can decrease the axial dispersion. By the simulation analysis of the one-dimension dispersion model of packed flotation column, it is found that small axial dispersion, high collection rate constant and low axial liquid velocity can increase the collection zone recovery.