Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nin...Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nine-layers for Sn-termination surfaces are all converged very well.The effects of relaxation mainly occurred within the three outermost atomic layers for both Mg and Sn terminations during the surface relaxation.Mg-termination surfaces are more stable than Sn-termination surfaces according to the analysis of surface energy.The density of states reveals the metallic property of both Mg-termination and Sn-termination surfaces.Covalent bonding exists in Mg2Sn(100)surfaces according to the analysis of partial density of states.展开更多
We carry out first-principles calculations of Ru(0001) films up to 30 monolayers (MLs) to study the quantum size effect (Q, SE) of Ru films for two cases: the freestanding Ru films and Ru films on Pt(111) sub...We carry out first-principles calculations of Ru(0001) films up to 30 monolayers (MLs) to study the quantum size effect (Q, SE) of Ru films for two cases: the freestanding Ru films and Ru films on Pt(111) substrates. Our studies show that the properties of these films (surface energy, work-function, charge density decay length in a vacuum and chemical reactivity) exhibit pronounced oscillatory behavior as a function of the film thickness, with an oscillation period of about four MLs for both cases due to the relationship of the match between the Fermi wave vector and the film thickness. Due to the localization of d-electron of Ru films, these quantum oscillations almost disappear when the thickness of the film is more than -20 ML for the free standing Ru films, while for the Ru films on Pt substrates the oscillations disappear quickly when the thickness of the film is beyond -13 ML. Our results reveal that the stability and reactivity of the Ru films could be tailored through Q, SE and the Ru bilayer grown on Pt substrates observed in the experiment is also related to the effect.展开更多
The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of form...The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.展开更多
Magnetism and the stability of (Ga 1-xFe x)As are investigated using the first principles LMTO-ASA band calculation by assuming supercell structures.Four concentrations of the 3d impurities are studied (x=1,1/2,1/...Magnetism and the stability of (Ga 1-xFe x)As are investigated using the first principles LMTO-ASA band calculation by assuming supercell structures.Four concentrations of the 3d impurities are studied (x=1,1/2,1/4,and 1/8).The results show the effect of varying Fe concentration on the magnetic and stable properties.展开更多
An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a st...An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.展开更多
Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculate...Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties.展开更多
Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The g...Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.展开更多
The density,function and discrete variation method (DFT - DVM) is used to study the interaction between kaolinite and gold. The correlation among the structure, chemical bond and stability is discussed. Several models...The density,function and discrete variation method (DFT - DVM) is used to study the interaction between kaolinite and gold. The correlation among the structure, chemical bond and stability is discussed. Several models are selected without gold and with gold in different directions and sites. The results show that the models with gold on the edge of kaolinite basal layer are more stable than those with gold above or under the layer, the models with gold near to [AlO2 (OH)(4)] octahedra are more stable than those with gold near to the vacancy without aluminium. The interaction between gold and the surface ions of kaolinite is strong enough to form the surface complexes.展开更多
Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip su...Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface.展开更多
Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS 3)] 2- on the surface of kaolinite.The correlation among structure,chemical bond and stability was discuss...Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS 3)] 2- on the surface of kaolinite.The correlation among structure,chemical bond and stability was discussed.Several models were selected with [Au(AsS 3)] 2- in different directions and sites.The results show that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and several oxygen atoms and form strong Au-O covalent bond,so these models are more stable than those with gold above or under the layer.The models with gold near to [AlO 2(OH) 4] octahedra are more stable than those with gold near to the vacancy without aluminium.These two stable tendencies in kaolinite-[Au(AsS 3)] 2- are stronger than that in kaolinite-Au systems.The interaction between [Au(AsS 3)] 2- and kaolinite is stronger than that between gold and kaolinite,and this interaction is strong enough to form the surface complexes.展开更多
Energetic and electronic structures of the on-top Al13In^m (n = 1 - 1 2, m = -1, 0, +1) clusters have been investigated by employing a first-principles pseudo-potential plane wave method. Several parameters such as...Energetic and electronic structures of the on-top Al13In^m (n = 1 - 1 2, m = -1, 0, +1) clusters have been investigated by employing a first-principles pseudo-potential plane wave method. Several parameters such as binding energies, second differences of energy and vertical-electron detachment energies have been adopted to characterize and evaluate the structure stability of Al13In^- (n= 1 - 12) clusters. The optimized models show that the Al13 moieties in the clusters can not retain the original regular icosahedron structure. Results from binding energy and second difference of energy show that Al13In and Al13In^- clusters with even n are more stable than those with odd n in contrast with Al13In^+ clusters. The calculation of vertical-electron detachment energies (VDE) of Al13In clusters indicates that Al13In and Al13In^- clusters with even n are closer to the closed shell of the Jellium model. Further analysis of electron density of states and electron density differences reveals that the enhanced stability of AI13In^- clusters is not only associated with the closed shell of valence electrons but also with the bonding type between I and associated AI atoms.展开更多
Recently,inorganic copper-based halide perovskites and their derivatives(CHPs)with chemical formulas AlCumXn(A=Rb and Cs;X=Cl,Br and I;l,m,and n are integers.),have received increasing attention in the photoluminescen...Recently,inorganic copper-based halide perovskites and their derivatives(CHPs)with chemical formulas AlCumXn(A=Rb and Cs;X=Cl,Br and I;l,m,and n are integers.),have received increasing attention in the photoluminescence field,due to their lead-free,cost-effective,earth-abundant and low electronic dimensionality.Ascribed to flexible valence charge of Cu(Cu1+and Cu2+)and complex competing phases,the crystal structures and phase stabilities of CHPs are complicated and ambiguous,which limits their experimental applications.Via comprehensive first-principles calculations,we have investigated thermodynamic stabilities of possible crystal phases for AlCumXn by considering all the possible secondary phases existing in inorganic crystal structure database(ICSD).Our results are in agreement with existing experiments and further predicted the existence of 10 stable CHPs,i.e.Rb3 Cu2 Br5,Rb3 Cu2 I5,Rb Cu2 Cl3,Rb2 Cu I3,Rb2 Cu Br4,Rb Cu Br3,Rb3 Cu2 Br7,Cs3 Cu2 Br7,Cs3 Cu2 Cl7 and Cs4 Cu5 Cl9,which have not yet been reported in experiments.This work provides a phase and compositional map that may guide experiments to synthesize more novel inorganic CHPs with diverse properties for potential functional applications.展开更多
Crystallographic stability is an important factor that affects the stability of perovskites.The stability dictates the commercial applications of lead-based organometal halide perovskites.The tolerance factor(t)and oc...Crystallographic stability is an important factor that affects the stability of perovskites.The stability dictates the commercial applications of lead-based organometal halide perovskites.The tolerance factor(t)and octahedral factor(μ)form the state-of-the-art criteria used to evaluate the perovskite crystallographic stability.We studied the crystallographic stabilities of halide and chalcogenide perovskites by exploring an effective alternative descriptor,the global instability index(GII)that was used as an indicator of the stability of perovskite oxides.We particularly focused on determining crystallographic reliability by calculating GII.We analyzed the bond valence models of the 243 halide and chalcogenide perovskites that occupied the lowest-energy cubic-phase structures determined by conducting the first-principles-based total energy minimization calculations.The decomposition energy(ΔHD)reflects the thermodynamic stability of the system and is considered as the benchmark that helps assess the effectiveness of GII in evaluating the crystallographic stability of the systems under study.The results indicated that the accuracy of predicting thermodynamic stability was significantly higher when GII(73.6%)was analyzed compared to the cases when t(55%)andμ(39.1%)were analyzed to determine the stability.The results obtained from the machine learning-based data mining method further indicate that GII is an important descriptor of the stability of the perovskite family.展开更多
In this study we employed the B3LYP/6-311++G(d,p) method combined with the CIS/6-311++G(d,p) calculation to investigate the effects of the type and the number of alkali metal atoms(Li, Na, K) on the geometric, electro...In this study we employed the B3LYP/6-311++G(d,p) method combined with the CIS/6-311++G(d,p) calculation to investigate the effects of the type and the number of alkali metal atoms(Li, Na, K) on the geometric, electronic, and optical properties of alkali metals substituted into adamantanes. Substituting alkali metal(Li, Na, K)atoms caused significant changes in the electronic and optical properties of adamantane. The Ad-1Li, Ad-1Na,and Ad-1K structures showed a dramatically decreased energy gap and ionization potential, while adding more alkali metal atoms slightly decreased these properties. Substituting more alkali metals led to a shift in the maximum absorption wavelength from the visible to the infrared region, depending on the type of alkali metal atom substituted. The magnitude of shift occurred in the following order: Li b Na b K. These characteristics suggest the possibility of tunable electronic structures of this material for optoelectronic device applications.展开更多
The stability of the phases in equilibrium is calculated and discussed in order to analyse and predict the reactions in SiC and Si_3N_4 whisker formation.Equilibria among SiC,Si_3N_4,Si_2N_2O,SiO_2 and the gas phase a...The stability of the phases in equilibrium is calculated and discussed in order to analyse and predict the reactions in SiC and Si_3N_4 whisker formation.Equilibria among SiC,Si_3N_4,Si_2N_2O,SiO_2 and the gas phase are evaluated at different C activity,N_2 pressure,and temperature.According to the phase stability diagrams,Si_3N_4 whisker was formed with the increase of N_2 pressure and decrease of C activity;SiC whisker was stable with the increase of C activity and decrease of N_2 pressure.In order to control the impure phases during the whisker formation,O_2 partial pressure is the most important factor.展开更多
By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice i...By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice is verified through phononmode analysis and room temperature molecular dynamics simulations. The carbon star lattice is found to be metallic due to the large states across the Fermi-level contributed by Pz orbital. Furthermore, the nanoribbons are also found to be metallic and no spin polarization occurs, except for the narrowest nanoribbon with one C12 ring, which has a ferromagnetic ground state. Our results show that carbon star lattice monolayer and nanoribbons have rich electronic properties with great potential in future electronic nanodevices.展开更多
This paper deals with the electronic structure and stability of a series of carbides Mo2-xCrxC based on the pseudopotential plane-waves approach of density functional theory and using the generalized gradient approxim...This paper deals with the electronic structure and stability of a series of carbides Mo2-xCrxC based on the pseudopotential plane-waves approach of density functional theory and using the generalized gradient approximation(GGA) for the exchange and correlation potential.The calculation results of formation energies demonstrate that the structure Mo2-xCrxC in range of 0≤x≤1.75 is stable under ambient conditions.The formation energies/stabilities of the structures Mo2-xCrxC increase /reduce with enhancing the content of Cr in the structure.Calculated density of state(DOS) show that an increase in the content of Cr dissolving in Mo2-xCrxC crystal cell can lead to the crystal cell volume slightly to shrinkage,TDOS to be elevated at the Fermi level and the peak value of DOS to decrease at the lower energy region from-13.78 to-10.16 eV.Mulliken population analysis explains that the Mo2-xCrxC phase possess the metallic,covalent and ionic bonds.展开更多
The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic ...The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property.We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites(OTBP)with one/zerodimensional(1D/0D)structures by first-principles calculations.The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D.Moreover,the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.展开更多
The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the ...The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.展开更多
To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were...To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were applied to engineering examples to calculate the stability coefficient of the slope before and after excavation in the natural state. After comparative analysis, it was concluded that the former had a clear mechanical model and concept, which could quickly provide stability results;the latter could accurately determine the sliding surface of the slope and simulate the stress state changes of the rock and soil mass. The stability coefficients calculated by the two methods were within the stable range, but their values were different. On this basis, combined with the calculation principles, advantages and disadvantages of the two methods, a comprehensive analysis method of slope stability based on the limit equilibrium and finite element methods was proposed, and the rationality of the stability coefficient calculated by this method was judged for a slope case.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.51464034 and 51301107).
文摘Mg2Sn(100)surfaces were investigated using ab-initio method based on density functional theory in order to explore the surface properties.It is found that both the eleven-layers for Mg-termination surfaces and the nine-layers for Sn-termination surfaces are all converged very well.The effects of relaxation mainly occurred within the three outermost atomic layers for both Mg and Sn terminations during the surface relaxation.Mg-termination surfaces are more stable than Sn-termination surfaces according to the analysis of surface energy.The density of states reveals the metallic property of both Mg-termination and Sn-termination surfaces.Covalent bonding exists in Mg2Sn(100)surfaces according to the analysis of partial density of states.
文摘We carry out first-principles calculations of Ru(0001) films up to 30 monolayers (MLs) to study the quantum size effect (Q, SE) of Ru films for two cases: the freestanding Ru films and Ru films on Pt(111) substrates. Our studies show that the properties of these films (surface energy, work-function, charge density decay length in a vacuum and chemical reactivity) exhibit pronounced oscillatory behavior as a function of the film thickness, with an oscillation period of about four MLs for both cases due to the relationship of the match between the Fermi wave vector and the film thickness. Due to the localization of d-electron of Ru films, these quantum oscillations almost disappear when the thickness of the film is more than -20 ML for the free standing Ru films, while for the Ru films on Pt substrates the oscillations disappear quickly when the thickness of the film is beyond -13 ML. Our results reveal that the stability and reactivity of the Ru films could be tailored through Q, SE and the Ru bilayer grown on Pt substrates observed in the experiment is also related to the effect.
基金Project supported by the National Key Laboratory Opening Funding of Advanced Composites in Special Environments in Harbin Institute of Technology,China
文摘The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.
文摘Magnetism and the stability of (Ga 1-xFe x)As are investigated using the first principles LMTO-ASA band calculation by assuming supercell structures.Four concentrations of the 3d impurities are studied (x=1,1/2,1/4,and 1/8).The results show the effect of varying Fe concentration on the magnetic and stable properties.
文摘An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.
基金This work is supported by National Key Technology Research and Development Program of Ministry of Science and Technology of China(2011BAE22B00)Program for Liaoning Innovative Research Team in University.
文摘Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties.
基金This work is supported by the Key Technologies Research and Development Program of Liaoning Province(2013201018).
文摘Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.
基金Supported by the Natural Science Foundation of China (No. 49802003)
文摘The density,function and discrete variation method (DFT - DVM) is used to study the interaction between kaolinite and gold. The correlation among the structure, chemical bond and stability is discussed. Several models are selected without gold and with gold in different directions and sites. The results show that the models with gold on the edge of kaolinite basal layer are more stable than those with gold above or under the layer, the models with gold near to [AlO2 (OH)(4)] octahedra are more stable than those with gold near to the vacancy without aluminium. The interaction between gold and the surface ions of kaolinite is strong enough to form the surface complexes.
基金Project(2015M580702)supported by the China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .4 0 172 0 17)
文摘Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS 3)] 2- on the surface of kaolinite.The correlation among structure,chemical bond and stability was discussed.Several models were selected with [Au(AsS 3)] 2- in different directions and sites.The results show that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and several oxygen atoms and form strong Au-O covalent bond,so these models are more stable than those with gold above or under the layer.The models with gold near to [AlO 2(OH) 4] octahedra are more stable than those with gold near to the vacancy without aluminium.These two stable tendencies in kaolinite-[Au(AsS 3)] 2- are stronger than that in kaolinite-Au systems.The interaction between [Au(AsS 3)] 2- and kaolinite is stronger than that between gold and kaolinite,and this interaction is strong enough to form the surface complexes.
基金This work was supported by the Science & Technology Major Programs of Ministry of Education of China (No. 101139)
文摘Energetic and electronic structures of the on-top Al13In^m (n = 1 - 1 2, m = -1, 0, +1) clusters have been investigated by employing a first-principles pseudo-potential plane wave method. Several parameters such as binding energies, second differences of energy and vertical-electron detachment energies have been adopted to characterize and evaluate the structure stability of Al13In^- (n= 1 - 12) clusters. The optimized models show that the Al13 moieties in the clusters can not retain the original regular icosahedron structure. Results from binding energy and second difference of energy show that Al13In and Al13In^- clusters with even n are more stable than those with odd n in contrast with Al13In^+ clusters. The calculation of vertical-electron detachment energies (VDE) of Al13In clusters indicates that Al13In and Al13In^- clusters with even n are closer to the closed shell of the Jellium model. Further analysis of electron density of states and electron density differences reveals that the enhanced stability of AI13In^- clusters is not only associated with the closed shell of valence electrons but also with the bonding type between I and associated AI atoms.
基金funding support from National Natural Science Foundation of China(grant No.11674237 and 51602211)National Key Research and Development Program of China(grant No.2016YFB0700700)+2 种基金Natural Science Foundation of Jiangsu Province of China(grant No.BK20160299)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)China Post-doctoral Foundation(grant No.7131705619).
文摘Recently,inorganic copper-based halide perovskites and their derivatives(CHPs)with chemical formulas AlCumXn(A=Rb and Cs;X=Cl,Br and I;l,m,and n are integers.),have received increasing attention in the photoluminescence field,due to their lead-free,cost-effective,earth-abundant and low electronic dimensionality.Ascribed to flexible valence charge of Cu(Cu1+and Cu2+)and complex competing phases,the crystal structures and phase stabilities of CHPs are complicated and ambiguous,which limits their experimental applications.Via comprehensive first-principles calculations,we have investigated thermodynamic stabilities of possible crystal phases for AlCumXn by considering all the possible secondary phases existing in inorganic crystal structure database(ICSD).Our results are in agreement with existing experiments and further predicted the existence of 10 stable CHPs,i.e.Rb3 Cu2 Br5,Rb3 Cu2 I5,Rb Cu2 Cl3,Rb2 Cu I3,Rb2 Cu Br4,Rb Cu Br3,Rb3 Cu2 Br7,Cs3 Cu2 Br7,Cs3 Cu2 Cl7 and Cs4 Cu5 Cl9,which have not yet been reported in experiments.This work provides a phase and compositional map that may guide experiments to synthesize more novel inorganic CHPs with diverse properties for potential functional applications.
基金supported by the National Natural Science Foundation of China(62004080 and 92061113)the Postdoctoral Innovative Talents Supporting Program(BX20190143)the China Postdoctoral Science Foundation(2020M670834)。
文摘Crystallographic stability is an important factor that affects the stability of perovskites.The stability dictates the commercial applications of lead-based organometal halide perovskites.The tolerance factor(t)and octahedral factor(μ)form the state-of-the-art criteria used to evaluate the perovskite crystallographic stability.We studied the crystallographic stabilities of halide and chalcogenide perovskites by exploring an effective alternative descriptor,the global instability index(GII)that was used as an indicator of the stability of perovskite oxides.We particularly focused on determining crystallographic reliability by calculating GII.We analyzed the bond valence models of the 243 halide and chalcogenide perovskites that occupied the lowest-energy cubic-phase structures determined by conducting the first-principles-based total energy minimization calculations.The decomposition energy(ΔHD)reflects the thermodynamic stability of the system and is considered as the benchmark that helps assess the effectiveness of GII in evaluating the crystallographic stability of the systems under study.The results indicated that the accuracy of predicting thermodynamic stability was significantly higher when GII(73.6%)was analyzed compared to the cases when t(55%)andμ(39.1%)were analyzed to determine the stability.The results obtained from the machine learning-based data mining method further indicate that GII is an important descriptor of the stability of the perovskite family.
基金financial support from the Thailand Research Fund and Khon Kaen University [Grant Number MRG5580165]the Higher Education Research Promotion and National Research University Project of Thailand,Office of the Higher Education Commission, through the Advanced Functional Materials Center of Khon Kaen University, Nanotechnology Center (NANOTEC), NSTDA Ministry of Science and Technology, Thailandpartial support from Thailand Center of Excellence in Physics (ThEP)
文摘In this study we employed the B3LYP/6-311++G(d,p) method combined with the CIS/6-311++G(d,p) calculation to investigate the effects of the type and the number of alkali metal atoms(Li, Na, K) on the geometric, electronic, and optical properties of alkali metals substituted into adamantanes. Substituting alkali metal(Li, Na, K)atoms caused significant changes in the electronic and optical properties of adamantane. The Ad-1Li, Ad-1Na,and Ad-1K structures showed a dramatically decreased energy gap and ionization potential, while adding more alkali metal atoms slightly decreased these properties. Substituting more alkali metals led to a shift in the maximum absorption wavelength from the visible to the infrared region, depending on the type of alkali metal atom substituted. The magnitude of shift occurred in the following order: Li b Na b K. These characteristics suggest the possibility of tunable electronic structures of this material for optoelectronic device applications.
文摘The stability of the phases in equilibrium is calculated and discussed in order to analyse and predict the reactions in SiC and Si_3N_4 whisker formation.Equilibria among SiC,Si_3N_4,Si_2N_2O,SiO_2 and the gas phase are evaluated at different C activity,N_2 pressure,and temperature.According to the phase stability diagrams,Si_3N_4 whisker was formed with the increase of N_2 pressure and decrease of C activity;SiC whisker was stable with the increase of C activity and decrease of N_2 pressure.In order to control the impure phases during the whisker formation,O_2 partial pressure is the most important factor.
基金supported by the National Natural Science Foundation of China(Grant No.11274356)the Ministry of Environmental Protection of China(Grant Nos.200909086 and 201109037)
文摘By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice is verified through phononmode analysis and room temperature molecular dynamics simulations. The carbon star lattice is found to be metallic due to the large states across the Fermi-level contributed by Pz orbital. Furthermore, the nanoribbons are also found to be metallic and no spin polarization occurs, except for the narrowest nanoribbon with one C12 ring, which has a ferromagnetic ground state. Our results show that carbon star lattice monolayer and nanoribbons have rich electronic properties with great potential in future electronic nanodevices.
文摘This paper deals with the electronic structure and stability of a series of carbides Mo2-xCrxC based on the pseudopotential plane-waves approach of density functional theory and using the generalized gradient approximation(GGA) for the exchange and correlation potential.The calculation results of formation energies demonstrate that the structure Mo2-xCrxC in range of 0≤x≤1.75 is stable under ambient conditions.The formation energies/stabilities of the structures Mo2-xCrxC increase /reduce with enhancing the content of Cr in the structure.Calculated density of state(DOS) show that an increase in the content of Cr dissolving in Mo2-xCrxC crystal cell can lead to the crystal cell volume slightly to shrinkage,TDOS to be elevated at the Fermi level and the peak value of DOS to decrease at the lower energy region from-13.78 to-10.16 eV.Mulliken population analysis explains that the Mo2-xCrxC phase possess the metallic,covalent and ionic bonds.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972102).
文摘The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property.We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites(OTBP)with one/zerodimensional(1D/0D)structures by first-principles calculations.The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D.Moreover,the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.
文摘The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.
文摘To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were applied to engineering examples to calculate the stability coefficient of the slope before and after excavation in the natural state. After comparative analysis, it was concluded that the former had a clear mechanical model and concept, which could quickly provide stability results;the latter could accurately determine the sliding surface of the slope and simulate the stress state changes of the rock and soil mass. The stability coefficients calculated by the two methods were within the stable range, but their values were different. On this basis, combined with the calculation principles, advantages and disadvantages of the two methods, a comprehensive analysis method of slope stability based on the limit equilibrium and finite element methods was proposed, and the rationality of the stability coefficient calculated by this method was judged for a slope case.