The objective of this study was to investigate variation and trends in dough rheological properties and flour quality traits in 330 Chinese wheat varieties. The dough rheological properties of development time(DT), st...The objective of this study was to investigate variation and trends in dough rheological properties and flour quality traits in 330 Chinese wheat varieties. The dough rheological properties of development time(DT), stability time(ST), and farinograph quality number(FQN)were evaluated, as well as the flour quality traits of protein(PC), wet gluten content(WGC), and sedimentation value(SV). The coefficients of variation of DT(40.5%), ST(58.1%), and FQN(42.4%) were higher than those of PC(9.1%), WGC(10.1%), and SV(15.3%). Normal distributions were observed for the flour quality indices but not for the rheological parameters. SV was strongly correlated with the three rheological parameters and accordingly might be used as a primary indicator for dough rheological property evaluation. Our results showed that there has been marked improvement in dough rheological properties for Chinese wheat varieties released since 1986, while flour quality has remained stable.展开更多
Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco anal...Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry.展开更多
基金supported by the Science and Technology Innovation Project of CAAS for Wang Tianyu (Crop Germplasm Resources Identification and Discovery)
文摘The objective of this study was to investigate variation and trends in dough rheological properties and flour quality traits in 330 Chinese wheat varieties. The dough rheological properties of development time(DT), stability time(ST), and farinograph quality number(FQN)were evaluated, as well as the flour quality traits of protein(PC), wet gluten content(WGC), and sedimentation value(SV). The coefficients of variation of DT(40.5%), ST(58.1%), and FQN(42.4%) were higher than those of PC(9.1%), WGC(10.1%), and SV(15.3%). Normal distributions were observed for the flour quality indices but not for the rheological parameters. SV was strongly correlated with the three rheological parameters and accordingly might be used as a primary indicator for dough rheological property evaluation. Our results showed that there has been marked improvement in dough rheological properties for Chinese wheat varieties released since 1986, while flour quality has remained stable.
基金the National Natural Science Foundation of China (30671270)the National High Technology R & D Program of China (2006AA100101).
文摘Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry.