For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ...Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.展开更多
High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and qualit...High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes.展开更多
The quality of infant flours used during the weaning age is of great importance in that it conditions the nutritional health of infants and young children. This study aimed to assess the nutritional and sanitary quali...The quality of infant flours used during the weaning age is of great importance in that it conditions the nutritional health of infants and young children. This study aimed to assess the nutritional and sanitary quality of infant flours produced in the city of Ouagadougou. This was a cross-sectional study including 11 out of 25 infant flour production units that gave their consent to partake in the study. In total, 25 infant flour samples have been collected from July to September 2021. The physicochemical and microbiological parameters were determined according to standard methods. The ANOVA analysis of variance showed significant differences between the means of the physico-chemical and the means of the microbiological parameters respectively. The results showed that 60% of proteins and 80% of lipid and total carbohydrate contents were below the authorised limits. The energy values were below the authorised limit in 88% of the cases. All instant infant flours had microbiological loads compliant with Burkinabè standards. As for infant flour to be cooked, 63.64% and 81.82% had satisfactory numbers of total coliforms and faecal coliforms respectively. Staphylococcus aureus and Escherichia coli were detected in these samples with 86.36% of infant formulae having results below the recommended limit. These results show that the infant flours produced in Ouagadougou were somehow of acceptable quality. However, there is a need to improve the formulae for macronutrient contents, energy values and sanitary quality to comply with the recommendations.展开更多
Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to en...Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to enhance the quality of six formulated flours, all based on Fonio and supplemented with Bambara groundnut, African locust bean fruit pulp, and cashew kernels. Results showed that Fonio had the highest carbohydrate content, while Bambara groundnut and Cashew kernels were rich in protein and lipid content. African locust bean fruit pulp was rich in fiber and Vitamin C, with a high β-carotene value. The cashew kernel had the highest energy value. Regarding mineral composition, African locust bean fruit pulp had the highest potassium content, while Bambara groundnut and African locust bean fruit pulp were rich in sodium. Cashew kernel and Fonio had higher iron and calcium content. Bambara groundnut had a higher zinc content, while cashew kernel had a higher magnesium content. The formulated flours made from fermented Fonio grains and enriched with Bambara groundnut, African locust bean fruit pulp, and cashew kernel had varying protein, fiber, carbohydrate, ash, and fat contents. The flour formulated with sprouted Fonio and enriched with the same ingredients had higher protein content and energy value than the other fermented seed-based flours. The mixed flours produced with fermented seeds and the flour produced from sprouted seeds met international standards. Overall, these findings offer valuable insights into the nutritional composition of the formulated flours and their potential to combat infant malnutrition in Côte d’Ivoire.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China (IRT_15R29)the Basic Research Innovation Group Project of Gansu Province, China (21JR7RA347)the Natural Science Foundation of Gansu Province, China (20JR10RA231)。
文摘Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.
基金supported by the National Natural Science Foundation of China(Grant No.31972005)Xinjiang Uygur Autonomous Region‘Tianshan Talent’Training Plan Project,China(Grant No.2022TSYCCX0063).
文摘High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes.
文摘The quality of infant flours used during the weaning age is of great importance in that it conditions the nutritional health of infants and young children. This study aimed to assess the nutritional and sanitary quality of infant flours produced in the city of Ouagadougou. This was a cross-sectional study including 11 out of 25 infant flour production units that gave their consent to partake in the study. In total, 25 infant flour samples have been collected from July to September 2021. The physicochemical and microbiological parameters were determined according to standard methods. The ANOVA analysis of variance showed significant differences between the means of the physico-chemical and the means of the microbiological parameters respectively. The results showed that 60% of proteins and 80% of lipid and total carbohydrate contents were below the authorised limits. The energy values were below the authorised limit in 88% of the cases. All instant infant flours had microbiological loads compliant with Burkinabè standards. As for infant flour to be cooked, 63.64% and 81.82% had satisfactory numbers of total coliforms and faecal coliforms respectively. Staphylococcus aureus and Escherichia coli were detected in these samples with 86.36% of infant formulae having results below the recommended limit. These results show that the infant flours produced in Ouagadougou were somehow of acceptable quality. However, there is a need to improve the formulae for macronutrient contents, energy values and sanitary quality to comply with the recommendations.
文摘Infant malnutrition is a significant issue in Côte d’Ivoire, and this study aims to address it by formulating infant flours using local ingredients. Fermentation, germination, and malting methods were used to enhance the quality of six formulated flours, all based on Fonio and supplemented with Bambara groundnut, African locust bean fruit pulp, and cashew kernels. Results showed that Fonio had the highest carbohydrate content, while Bambara groundnut and Cashew kernels were rich in protein and lipid content. African locust bean fruit pulp was rich in fiber and Vitamin C, with a high β-carotene value. The cashew kernel had the highest energy value. Regarding mineral composition, African locust bean fruit pulp had the highest potassium content, while Bambara groundnut and African locust bean fruit pulp were rich in sodium. Cashew kernel and Fonio had higher iron and calcium content. Bambara groundnut had a higher zinc content, while cashew kernel had a higher magnesium content. The formulated flours made from fermented Fonio grains and enriched with Bambara groundnut, African locust bean fruit pulp, and cashew kernel had varying protein, fiber, carbohydrate, ash, and fat contents. The flour formulated with sprouted Fonio and enriched with the same ingredients had higher protein content and energy value than the other fermented seed-based flours. The mixed flours produced with fermented seeds and the flour produced from sprouted seeds met international standards. Overall, these findings offer valuable insights into the nutritional composition of the formulated flours and their potential to combat infant malnutrition in Côte d’Ivoire.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.