期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Influence of regenerator flow resistance on stability of pulse tube cooler 被引量:1
1
作者 蒋彦龙 陈国邦 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期277-281,共5页
Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigate... Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigated theoretically. The calculation results show that increasing regenerator flow resistance can lead to a smaller extent of DC flow.Therefore,a better stability performance of the cooler can be realized.On this basis,the stability characteristics of the cooler with various regenerator matrix arrangements are studied by experiments.By replacing 30% space of 247 screens of stainless steel mesh at the cold part of the regenerator by lead balls of 0.25 mm diameter,a long-time stable temperature output at 80 K region is achieved. This achievement provides a new way to obtain stable performance for pulse tube coolers at high temperature and is helpful for its application. 展开更多
关键词 pulse tube cooler flow resistance STABILITY
下载PDF
Flow resistance and its prediction methods in compound channels 被引量:9
2
作者 Kejun Yang Shuyou Cao Xingnian Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第1期23-31,共9页
A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows. The effe... A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows. The effective Manning, Darcy-Weisbach, Chezy coefficients and the relative Nikuradse roughness height were analyzed. Many different representative methods for predicting the composite roughness were systematically summarized. Besides the measured data, a vast number of laboratory data and field data for compound channels were collected and used to check the validity of these methods for different subsection divisions including the vertical, horizontal, diagonal and bisectional divisions. The computation showed that these methods resulted in big errors in assessing the composite roughness in compound channels, and the reasons were analyzed in detail. The error magnitude is related to the subsection divisions. 展开更多
关键词 flow resistance Compound channels Bed roughness Inbank and overbank flows Subsection division
下载PDF
Numerical investigation on flow process of liquid metals in melt delivery nozzle during gas atomization process for fine metal powder production 被引量:6
3
作者 Chang LIU Xin LI +3 位作者 Shi SHU Yu-he HUANG Xing-gang LI Qiang ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3192-3204,共13页
Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)d... Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN. 展开更多
关键词 gas atomization melt delivery nozzle liquid metal flow resistance metal powder
下载PDF
Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication:A review 被引量:3
4
作者 Xianzhu Huang Jian Wu +3 位作者 Yudan Zhu Yumeng Zhang Xin Feng Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第11期1552-1562,共11页
How to reduce flow resistance of nano-confined fluids to achieve a high flux is a new challenge for modern chemical engineering applications, such as membrane separation and nanofluidic devices. Traditional models are... How to reduce flow resistance of nano-confined fluids to achieve a high flux is a new challenge for modern chemical engineering applications, such as membrane separation and nanofluidic devices. Traditional models are inapplicable to explain the significant differences in the flow resistance of different liquid–solid systems.On the other hand, friction reduction in liquid nano-lubrication has received considerable attention during the past decades. Both fields are exposed to a common scientific issue regarding friction reduction during liquid–solid relative motion at nanoscale. A promising approach to control the flow resistance of nano-confined fluids is to reference the factors affecting liquid nano-lubrication. In this review, two concepts of the friction coefficient derived from fluid flow and tribology were discussed to reveal their intrinsic relations. Recent progress on low or ultra-low friction coefficients in liquid nano-lubrication was summarized based on two situations. Finally, a new strategy was introduced to study the friction coefficient based on analyzing the intermolecular interactions through an atomic force microscope(AFM), which is a cutting-point to build a new model to study flowresistance at nanoscale. 展开更多
关键词 flow resistance Membrane separation Liquid nano-lubrication MODEL Intermolecular interactions AFM
下载PDF
Experimental study on performance of flow & desulfurisation of a gas-liquid screen scrubber for wet flue gas desulfurization 被引量:2
5
作者 方立军 惠世恩 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第5期727-731,共5页
In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gas-liquid screen scrubber were experimentally studied when limestone was used as absorbent. Experiments were carried out ... In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gas-liquid screen scrubber were experimentally studied when limestone was used as absorbent. Experiments were carried out at varying the flue gas velocity and slurry flux in concurrent and countercurrent tower respectively. The experimental results showed that the flow resistance of absorber increased rapidly with an increase of the flue gas velocity whether in concurrent or in countereurrent tower, and the up trend of the flow resistance in the cotmtercurrent tower was higher than those in the concurrent one. The influence of the flue gas velocity on the flow resistance of absorber was more than those of the slurry flux density. Whether in the concurrent tower or in the cotmtercurrent one, increasing the flue gas velocity or the slurry flux density would enhance the desulphurization efficiency. The influence of the slurry flux density on the desulfurisation efficiency was greater than those of the flue gas velocity. 展开更多
关键词 gas-liquid screen scrubber wet flue gas desulfurisation (WFGD) flow resistance DESULPHURIZATION
下载PDF
Simplified Calculation of Flow Resistance of Suspension Bridge Main Cable Dehumidification System 被引量:2
6
作者 Zhiyuan Tu Fusheng Peng +3 位作者 Zijie Wei Guo Qian Jie Wang Chunjie Huang 《Fluid Dynamics & Materials Processing》 EI 2021年第6期1195-1211,共17页
To calculate the flow resistance of a main cable dehumidification system,this study considers the air flow in the main cable as the flow in a porous medium,and adopts the Hagen–Poiseuille equation by using average hy... To calculate the flow resistance of a main cable dehumidification system,this study considers the air flow in the main cable as the flow in a porous medium,and adopts the Hagen–Poiseuille equation by using average hydraulic radius and capillary bundle models.A mathematical derivation is combined with an experimental study to obtain a semi-empirical flow resistance formula.Additionally,Fluent software is used to simulate the flow resistance across the main cable relative to the experimental values.Based on the actual measured results for a Yangtze River bridge,this study verifies the semi-empirical formula,and indicates that it can be applied in actual engineering. 展开更多
关键词 Main cable dehumidification computational fluid dynamics dry air semi-empirical flow resistance formula
下载PDF
Effects of simulated submerged and rigid vegetation and grain roughness on hydraulic resistance to simulated overland flow 被引量:9
7
作者 YANG Ping-ping ZHANG Hui-lan MA Chao 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2042-2052,共11页
Better understanding of the role of vegetation and soil on hydraulic resistance of overland flow requires quantitative partition of their interaction. In this paper, a total of 144 hydraulic flume experiments were car... Better understanding of the role of vegetation and soil on hydraulic resistance of overland flow requires quantitative partition of their interaction. In this paper, a total of 144 hydraulic flume experiments were carried out to investigate the hydraulic characteristics of overland flow. Results show that hydraulic resistance is negatively correlated with Reynolds number on non-simulated vegetated slopes, while positively on vegetated slopes. The law of composite resistance agrees with the dominant resistance, depending on simulated vegetation stem,surface roughness, and discharge. Surface roughness has greater influence on overland flow resistance than vegetation stem when unit discharge is lower than the low-limited critical discharge, while vegetation has a more obvious influence when unit discharge is higher than the upper-limited critical discharge. Combined effects of simulated vegetation and surface roughness are unequal to the sum of the individual effects through t-test, implying the limitation of using linear superposition principle in calculating overland flow resistances under combined effect of roughness elements. 展开更多
关键词 Hydraulic resistance Overland flow Vegetation resistance Grain resistance Flume experiment
下载PDF
Analytical determination of flow resistance characteristic for combination channel inside hydraulic manifold block 被引量:2
8
作者 王永安 《High Technology Letters》 EI CAS 2008年第3期304-308,共5页
Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the c... Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the combination-channel model were confirmed to have effect on the pressure-drop bythe numerical method,and a BP neural network model was accordingly constructed to predict the channelpressure-drops.The flow resistance characteristic curves of various channels were achieved,and a perfor-mance parameter was given to evaluate the through-flow characteristic of the channel according to thecurves.The predictions are' in agreement with the numerical computation,indicating that the method canbe utilized to accurately determine the flow characteristic of the combination channel with high efficiency. 展开更多
关键词 computational fluid dynamics BP neural network flow resistance characteristic combination channel hydraulic manifold block
下载PDF
Internal flow mechanism of cone-straight nozzle 被引量:1
9
作者 Tian-Wen Jiang Zhong-Wei Huang +1 位作者 Jing-Bin Li Yi-Su Zhou 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1507-1519,共13页
Cone-straight nozzle has been widely used in well bore cleaning,assisting drilling in petroleum industries due to its good clustering properties.The structure including cone angle and throat length has also been studi... Cone-straight nozzle has been widely used in well bore cleaning,assisting drilling in petroleum industries due to its good clustering properties.The structure including cone angle and throat length has also been studied by scholars and been optimized.However,the internal flow properties have not been investigated clearly especially the boundary layer flow.In this paper LES model is used to capture the small-scale flow state near the nozzle wall.The RNG k-epsilon model is used to validate the accuracy of the LES simulation,the simulation data shows a good agreement.Three different inlet velocities are considered in simulations.The velocity distribution,shear stress,boundary layer thickness,skin friction coefficient and Reynolds stress are analyzed,the boundary layer separation and transition are discussed.The state of flow inside nozzle is laminar with inlet velocity of 1 m/s and gradually transferred into turbulent with the increasing inlet velocity.The most severe turbulence is at the entrance of the throat section,the vortex structure appears at the entrance of converging section and dose not survive,the vortex structure appears in sequence along the throat section wall when the inlet velocity is set to 5 m/s and 10 m/s the flow properties along the conical nozzle are revealed clearly,the main flow resistance is mainly produced in throat section.All these works aim to provide theoretical support for the further processing optimization of the nozzle structure and reduce the flow resistance of nozzle. 展开更多
关键词 Cone-straight nozzle Boundary layer flow resistance
下载PDF
Integrated numerical model for vegetated surface and saturated subsurface flow interaction
10
作者 K. S. ERDURAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第7期881-898,共18页
The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previo... The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previously developed quasi-three-dimensional (Q3D) vegetated surface flow model with a two-dimensional (2D) saturated groundwater flow model. The vegetated surface flow model is constructed by coupling the explicit finite volume solution of 2D shallow water equations (SWEs) with the implicit finite difference solution of Navier-Stokes equations (NSEs) for vertical velocity distribution. The subsurface model is based on the explicit finite volume solution of 2D saturated groundwater flow equations (SGFEs). The ground and vegetated surface water interaction is achieved by introducing source-sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The integrated model is applied to four test cases, and the results are satisfactory. 展开更多
关键词 vegetated surface flow saturated groundwater flow flow interaction tightcoupling finite volume method finite difference method flow resistance
下载PDF
The Elaboration of Flow Resistance Model for a Bag Filter Serving a 200 MW Power Plant
11
作者 Yukun Lv Jiaxi Yang 《Fluid Dynamics & Materials Processing》 EI 2020年第4期827-835,共9页
On the basis of a macro flow resistance method and the Darcy Theory,a mathematical model is elaborated to characterize the flow resistance of a bag filter serving a coal-fired power plant.The development of the theore... On the basis of a macro flow resistance method and the Darcy Theory,a mathematical model is elaborated to characterize the flow resistance of a bag filter serving a coal-fired power plant.The development of the theoretical model is supported through acquisition of relevant data obtained by scanning the micro structure of the bag filter by means of an electron microscope.The influence of the running time and boiler load on the flow resistance and the impact of the flow resistance on the efficiency of the induced draft fan are analyzed by comparing the results of on-site operation tests.We show that the initial operation time and the table operation time are linearly related to the flow resistance of the bag filter;with the increase of boiler load,the flow resistance of the bag filter rises approximately as a quadratic function;with the rise of resistance,the power consumption of the induced draft fan increases while the efficiency of the induced draft fan decreases. 展开更多
关键词 Macro flow resistance method Darcy Theory bag filter running time boiler load
下载PDF
Sedimentation motion of sand particles in moving water(Ⅰ):The resistance on a small sphere moving in non-uniform flow 被引量:2
12
作者 Shu-Tang Tsai 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第6期432-437,共6页
In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.Bu... In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field. 展开更多
关键词 Sedimentation motion of sand particles in moving water The resistance on a small sphere moving in non-uniform flow
下载PDF
Effect of rainfall on a colluvial landslide in a debris flow valley
13
作者 QIAO Liang MENG Xing-min +4 位作者 CHEN Guan ZHANG Yi GUO Peng ZENG Run-qiang LI Ya-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1113-1123,共11页
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocki... A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography(ERT), Terrestrial Laser Scanning(TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part(0~41 m) of the landslide was greaterthan in the central-front part(41~84 m) and(2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure:(1) gully erosion at the slope surface;(2) shallow sliding failure;(3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement(using traditional methods) indicated that long duration light rainfall(average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding(30.09 mm/d) during the critical failure sub-phase(EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season. 展开更多
关键词 Colluvial landslide Debris flow Rainfall Electrical resistivity tomography Terrestrial laser scanning Electrical resistivity tomography
下载PDF
Analysis of Static Flow Resistivity of a Modified Impedance Tube
14
作者 J. Niresh S. Neelakrishnan +1 位作者 S. Subha Rani Siddharth Shrivastava 《Circuits and Systems》 2016年第9期2253-2261,共9页
The static flow resistivity is a fundamental parameter for measuring and classifying the sound absorption behavior of various types of materials. Several methods have been developed for measuring the static flow resis... The static flow resistivity is a fundamental parameter for measuring and classifying the sound absorption behavior of various types of materials. Several methods have been developed for measuring the static flow resistivity acoustically. Most of these methods cannot be implemented directly in the standard tubes which are widely used for measurements of sound absorption coefficients and impedance as defined in ISO 10534.2. The accuracy of the proposed method and the tube is verified through finite element analysis and the feasibility to determine the static flow resistivity is validated through experiments. It is validated that the accuracy of the proposed method is highly dependent on the position of the acoustic center of the measurement microphones and the accuracy can be enhanced by increasing the back cavity depth and/or decreasing the measurement frequency. 展开更多
关键词 Static flow Resistivity Impedance Tube ISO 10534.2 Sound Absorption
下载PDF
The Effects of Post-Stenotic Dilatations on the Flow of Couple Stress Fluid through Stenosed Arteries
15
作者 K. Maruthi Prasad T. Sudha M. V. Phanikumari 《American Journal of Computational Mathematics》 2016年第4期365-376,共12页
The flow of incompressible couple stress fluid in a circular tube with stenosis and dilatations has been investigated. The stenosis was assumed to be axially symmetric and mild. The flow equations have been linearized... The flow of incompressible couple stress fluid in a circular tube with stenosis and dilatations has been investigated. The stenosis was assumed to be axially symmetric and mild. The flow equations have been linearized and the expressions for the resistance to the flow, velocity, pressure drop, wall shear stress have been derived. The effects of various parameters on these flow variables have been investigated. It is found that the resistance to the flow and pressure drop increase with height of the stenosis and decrease with post stenotic dilatation. Pressure drop decreases with couple stress fluid parameter for both stenosis and post stenotic dilatation. Further, the wall shear stress increases with height of the stenosis and couple stress parameter but decreases with post stenotic dilatation and couple stress fluid parameter. 展开更多
关键词 STENOSIS DILATATION Wall Shear Stress Resistance to the flow Couple Stress Fluid Parameter
下载PDF
旋转带肋通道流阻特性研究
16
作者 由儒全 许云腾 李海旺 《风机技术》 2024年第2期51-61,共11页
With the development of aero-engines, the turbine inlet temperature continues to rise. In order to ensure the safety and reliability of the turbine blades, cooling structures must be set inside turbine blades to cool ... With the development of aero-engines, the turbine inlet temperature continues to rise. In order to ensure the safety and reliability of the turbine blades, cooling structures must be set inside turbine blades to cool them. Heat transfer coefficient and flow resistance are the key parameters to measure the cooling characteristics of internal cooling structures. In this paper, the characteristics of flow resistance in a rotating ribbed channel is presented numerical simulation under different rib spacings, rib angles, and thermal boundary conditions. The results show that, separation and reattachment of fluid between ribs is the key effect of rib spacing on flow resistance. The flow resistance is small when the rib spacing is small, because it's difficult for the fluid to form reattachment between the ribs. With the increase of rib spacing, the reattachment phenomenon is more obvious and the flow resistance increases accordingly. In general,p: e=10 channel has the maximum flow resistance. Secondary flow caused by the ribs is the key factor affecting the flow resistance characteristics with different rib angles. The secondary flow interacts with the main flow and causes flow loss through mixing, thus affecting the flow resistance of the channel. Under static condition, the flow resistance of 60°ribbed channel is the largest. The flow resistance of channel was affected by the temperature rise ratio also. And with the increase of the Ro, the temperature rise ratio has a more obvious effect on the flow resistance of the ribbed channel.When Ro=0.45, the flow resistance of the channel with a temperature rise ratio of 0.4 is 2.4 times that of the channel without temperature rise, while when Ro=0.3, it is 1.6 times, and when Ro=0.15, it is 1.2 times. 展开更多
关键词 Blade Cooling Ribbed Passage ROTATION flow Resistance Characteristics
下载PDF
Solid-phase sintering process and forced convective heat transfer performance of porous-structured micro-channels 被引量:2
17
作者 白鹏飞 易子川 +1 位作者 唐彪 周国富 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期900-906,共7页
A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was ... A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer. 展开更多
关键词 solid-phase sintering composite micro-channels porous structure flow resistance convective heat transfer
下载PDF
采集凝固热热泵系统连续取热的参数条件分析 被引量:1
18
作者 钱剑峰 郭运 李江丹 《哈尔滨商业大学学报(自然科学版)》 CAS 2011年第4期630-632,637,共4页
针对环境水源现状,提出采集凝固热热泵系统为建筑物供热的新思路.凝固换热器是该系统的关键设备之一,在介绍凝固换热器原理的基础上,对连续提取凝固热的参数条件及流动阻力问题进行了分析,所得结论将为该热泵系统的研究提供有益参考.
关键词 热泵系统 凝固热 连续取热 流动阻力 参数
下载PDF
Theoretical Analysis and Experimental Verification on Valve-less Piezoelectric Pump with Hemisphere-segment Bluff-body 被引量:9
19
作者 JI Jing ZHANG Jianhui +3 位作者 XIA Qixiao WANG Shouyin HUANG Jun ZHAO Chunsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期595-605,共11页
Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump ch... Existing researches on no-moving part valves in valve-less piezoelectric pumps mainly concentrate on pipeline valves and chamber bottom valves, which leads to the complex structure and manufacturing process of pump channel and chamber bottom. Furthermore, position fixed valves with respect to the inlet and outlet also makes the adjustability and controllability of flow rate worse. In order to overcome these shortcomings, this paper puts forward a novel implantable structure of valve-less piezoelectric pump with hemisphere-segments in the pump chamber. Based on the theory of flow around bluff-body, the flow resistance on the spherical and round surface of hemisphere-segment is different when fluid flows through, and the macroscopic flow resistance differences thus formed are also different. A novel valve-less piezoelectric pump with hemisphere-segment bluff-body (HSBB) is presented and designed. HSBB is the no-moving part valve. By the method of volume and momentum comparison, the stress on the bluff-body in the pump chamber is analyzed. The essential reason of unidirectional fluid pumping is expounded, and the flow rate formula is obtained. To verify the theory, a prototype is produced. By using the prototype, experimental research on the relationship between flow rate, pressure difference, voltage, and frequency has been carried out, which proves the correctness of the above theory. This prototype has six hemisphere-segments in the chamber filled with water, and the effective diameter of the piezoelectric bimorph is 30mm. The experiment result shows that the flow rate can reach 0.50 mL/s at the frequency of 6 Hz and the voltage of 110 V. Besides, the pressure difference can reach 26.2 mm H20 at the frequency of 6 Hz and the voltage of 160 V. This research proposes a valve-less piezoelectric pump with hemisphere-segment bluff-body, and its validity and feasibility is verified through theoretical analysis and experiment. 展开更多
关键词 valve-less piezoelectric pump hemisphere-segment bluff-body flow resistance
下载PDF
Bionic Design and Finite Element Analysis of Elbow in Ice Transportation Cooling System 被引量:4
20
作者 Dejun Miao~(1,2), Xiuhua Sui~3, Linjing Xiao~3 1. Key Laboratory of Mine Hazard Prevention and Control (Ministry of Education, China), Shandong University of Science and Technology, Qingdao 266510, P. R. China 2. School of Architecture, Tsinghua University, Beijing 100084, P. R. China 3. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期301-306,共6页
With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical pr... With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical problem; typically flowresistance occurs in the elbow. In the present study, according to the analysis of the surface morphology of fish scale, abiomimetic functional surface structure for the interior wall of elbow is designed. Based on the theory of liquid-solid two phaseflow, a CFD numerical simulation of ice-water mixture flowing through the elbow is carried out using finite element method.Conventional experiments of pressure drop and flow resistance for both bionic and common elbows are conducted to test theeffect of the bionic elbow on flow resistance reduction. It is found that with the increase in the ice mass fraction in the ice-watermixture, the effect of bionic elbow on resistance reduction becomes more obvious. 展开更多
关键词 bionic elbow two phase flow ice transportation flow resistance reduction pressure loss
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部