In this paper the scheduling problem to minimize the expected makespan is discussed on two-machine flow shops with random disturbance on job processing times. The problem is represented by a stochastic programming mod...In this paper the scheduling problem to minimize the expected makespan is discussed on two-machine flow shops with random disturbance on job processing times. The problem is represented by a stochastic programming model. We approximate the stochastic problem by a deterministic problem which can be solved by Johnson's rule. The estimation of approximation error is also discussed by analyzing the stochastic model and its approximate LP model.展开更多
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S...The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.展开更多
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ...Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.展开更多
The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is int...The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is introduced to class population individuals into Pareto fronts to improve searching efficiency. Besides investigating the crowding distance and the elitist solution strategy, two effective bi-criteria local search procedures based on objective increments are presented to improve searching effectiveness. Based on the properties and methods, a hybrid evolutionary algorithm is proposed for the considered problems and compared with the best existing algorithms. Experimental results show that the proposed algorithm is effective with high efficiency.展开更多
文摘In this paper the scheduling problem to minimize the expected makespan is discussed on two-machine flow shops with random disturbance on job processing times. The problem is represented by a stochastic programming model. We approximate the stochastic problem by a deterministic problem which can be solved by Johnson's rule. The estimation of approximation error is also discussed by analyzing the stochastic model and its approximate LP model.
基金partially supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011531)the National Natural Science Foundation of China under Grant 62173356+2 种基金the Science and Technology Development Fund(FDCT),Macao SAR,under Grant 0019/2021/AZhuhai Industry-University-Research Project with Hongkong and Macao under Grant ZH22017002210014PWCthe Key Technologies for Scheduling and Optimization of Complex Distributed Manufacturing Systems(22JR10KA007).
文摘The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.
基金The National Natural Science Foundation of China(No.60504029,60672092)the National High Technology Research and Development Program of China(863Program)(No.2008AA04Z103)
文摘The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is introduced to class population individuals into Pareto fronts to improve searching efficiency. Besides investigating the crowding distance and the elitist solution strategy, two effective bi-criteria local search procedures based on objective increments are presented to improve searching effectiveness. Based on the properties and methods, a hybrid evolutionary algorithm is proposed for the considered problems and compared with the best existing algorithms. Experimental results show that the proposed algorithm is effective with high efficiency.