Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr...The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-...Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.展开更多
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure f...A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological ...The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind.展开更多
A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from d...A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.展开更多
Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster managem...Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.展开更多
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the paramete...Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.展开更多
A coupled intravascular-transvascular-interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microv...A coupled intravascular-transvascular-interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille's law and Darcy's law, respectively, transvascular flow is described by Starling's law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.展开更多
In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, s...In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented.展开更多
The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic proper...The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.展开更多
This paper describes a flow simulation model used to determine the effects of a shroud on the performance of a wind turbine. Also, it focuses on comparing the standard type of wind turbines— upwind turbine with three...This paper describes a flow simulation model used to determine the effects of a shroud on the performance of a wind turbine. Also, it focuses on comparing the standard type of wind turbines— upwind turbine with three blades fixed on a horizontal axis—with a new type that is called a shrouded wind turbine. In addition, the two types of turbines are compared in terms of velocities profiles, pressure distribution and power output when applying four different velocities of winds: 10, 20, 30, 40 mph. Numerical values and graphs are highlighted in order to show the main differences between the shrouded turbine and the conventional one. Finally, a conclusion and some recommendations are provided to summarize the scope of this research and give a better prediction for a future optimal design of the shrouded turbines.展开更多
基金the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of Zhejiang Province (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
基金financially supported by the National Key Research and Development Plan(No.2018YFB0605601)the National Natural Science Foundation of China(No.41972168)。
文摘The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金supported by the National Key Technologies R&D Program of China for the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08-02)the Program for the Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. B08408)
文摘Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.
基金This project is supported by Provincial Natural Science Foundation of Jiangsu, China(No.BK2004406)Provincial Innovation Foundation for Graduate Students of Jiangsu, China(No.1223000053
文摘A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
文摘The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind.
基金Supported by the National Natural Science Foundation of China (50905016)
文摘A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.
基金financially supported by Department of Space,India(Grant No.ISRO/RES/4/663/18-19)。
文摘Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.
基金supported by the Chinese Jiangsu Provincial Natural Science Foundation (Grant No. BK2001017)
文摘Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
基金The project supported by the National Natural Science Foundation of China(10372026)
文摘A coupled intravascular-transvascular-interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille's law and Darcy's law, respectively, transvascular flow is described by Starling's law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.
基金National Natural Science Foundation of China(No. 50275052).
文摘In the course of studying on aerodynamic change and its effect on steering stability and controllability of an automobile in passing, because of multi interaction streams, it is difficult to use traditional methods, such as wind tunnel test and road test. If the passing process of an automobile is divided into many time segments, so as to avoid the use of moving mesh which takes large calculation resource and CPU processing time in calculating, the segments are simulated with computational fluid dynamics (CFD) method, then the approximate computational results about external flow field will be obtained. On the basis of the idea, the change of external flow field of wagon-shaped car at the moment of passing is simulated through solving three-dimensional, steady and uncompressible N-S equations with finite volume method. Numerical simulation analysis of side force coefficient, stream lines, body surface pressure distribution of wagon-shaped car are presented and a preliminary discussion of aerodynamic characteristics of correlative situations is obtained. Finally, the C3 -x/l curve of side force coefficient(C3) of car following relative distance (x/l) between cars is obtained. By comparison, the curve is coincident well with the experimental data, which shows creditability of numerical simulation methods presented.
基金Supported by the National Natural Science Foundation of China under Grant No 11371069the Young Foundation of Institute of Applied Physics and Computational Mathematics under Grant No ZYSZ1518-13the Science Foundation of China Academy of Engineering Physics under Grant No 2013A0101004
文摘The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.
文摘This paper describes a flow simulation model used to determine the effects of a shroud on the performance of a wind turbine. Also, it focuses on comparing the standard type of wind turbines— upwind turbine with three blades fixed on a horizontal axis—with a new type that is called a shrouded wind turbine. In addition, the two types of turbines are compared in terms of velocities profiles, pressure distribution and power output when applying four different velocities of winds: 10, 20, 30, 40 mph. Numerical values and graphs are highlighted in order to show the main differences between the shrouded turbine and the conventional one. Finally, a conclusion and some recommendations are provided to summarize the scope of this research and give a better prediction for a future optimal design of the shrouded turbines.