Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach...Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR.展开更多
A depth_integrated two_dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the f...A depth_integrated two_dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigation channel, i.e. the North Channel of the Yangtze River Estuary,before and after the first phase waterway project is implemented. Particularly, the influences of groin length and the orientation of the submerged dam on the flow ratio and sediment load discharging into the North Channel were discussed. The numerical results demonstrate that less sediment load discharges into the navigation channel, which unburdens the waterway dredging, but in the meantime the flow ratio is also decreased. The flow and sediment ratio can be adjusted by changing layout and dimensions of the hydro_structures, such as the groin length, the top height, etc. The effect of the orientation of the submerged dam is more obvious than the groin lengh.展开更多
Geomorphic dynamics of alluvial rivers in response to upstream damming have substantial impacts on navigation, habitat protection, and channel stability. The purpose of this study was to determine how flow and sedimen...Geomorphic dynamics of alluvial rivers in response to upstream damming have substantial impacts on navigation, habitat protection, and channel stability. The purpose of this study was to determine how flow and sediment regimes, and meander characteristics affect the morphological adjustment of bends in the Lower Jingjiang Reach(LJR) before and after the Three Gorges Project(TGP). Based on detailed field measurements and hydrological and topographic datasets from 1991 to 2016, banks and point bars morphodynamics of 12continuous bends in the LJR were comprehensively analyzed. Point bars in the LJR mainly experienced a net deposition before the TGP operation, but substantially deteriorated with a net erosion rate of 4.6 million m^(3) yr^(-1) in the post-TGP periods(2003–2016), and erosion on heads and upstream margins of point bars was a general adjustment pattern in the 12 bends.The most significant morphological changes of point bars and banks occurred in 2006–2011,indicating a delayed response of the channel evolution of the LJR to damming. Detailed observations suggested that the medium discharges(16,000–18,000 m^(3) s^(-1)) were the most contributive discharges in shaping the morphology of point bars and banks in the LJR after damming. In addition, we revealed the importance of sediment supply on meander deformation of the LJR, driven by sediment exchange over point bars, and more upstream planform deformation tended to occur in bends with high sinuosity(>2.0) in the LJR after damming.The relationship between meander deformation and sinuosity was manifested through the geometric adjustment range of point bars. The morphological adjustments of point bars in the highly curved or compound bends of the LJR were more conducive to cause flow deflections,leading to form concave-bank bars after the TGP operation.展开更多
Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized cha nnel equilibrium profile...Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized cha nnel equilibrium profile. The variation of the longitudinal equilibrium profile, and the r elation with the condition of the inflow water and sediment from the upper reach were analyzed. Meanwhile, the numerical simulation results were compared with t he corresponding theoretical results. Finally, the equilibrium longitudinal slop e variations and its impact on flood control were analyzed after the sediment tr ansport process has changed.展开更多
基金financially supported by the National Natural Science Foundation of China(51579113,51309111,51309113)
文摘Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR.
文摘A depth_integrated two_dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigation channel, i.e. the North Channel of the Yangtze River Estuary,before and after the first phase waterway project is implemented. Particularly, the influences of groin length and the orientation of the submerged dam on the flow ratio and sediment load discharging into the North Channel were discussed. The numerical results demonstrate that less sediment load discharges into the navigation channel, which unburdens the waterway dredging, but in the meantime the flow ratio is also decreased. The flow and sediment ratio can be adjusted by changing layout and dimensions of the hydro_structures, such as the groin length, the top height, etc. The effect of the orientation of the submerged dam is more obvious than the groin lengh.
基金Key Program of National Natural Science Foundation of China,No.U2040219National Natural Science Foundation of China,No.51579015Program of National Key Research and Development Plan of China,No.2016YFC0402108, No.2016YFC0402103。
文摘Geomorphic dynamics of alluvial rivers in response to upstream damming have substantial impacts on navigation, habitat protection, and channel stability. The purpose of this study was to determine how flow and sediment regimes, and meander characteristics affect the morphological adjustment of bends in the Lower Jingjiang Reach(LJR) before and after the Three Gorges Project(TGP). Based on detailed field measurements and hydrological and topographic datasets from 1991 to 2016, banks and point bars morphodynamics of 12continuous bends in the LJR were comprehensively analyzed. Point bars in the LJR mainly experienced a net deposition before the TGP operation, but substantially deteriorated with a net erosion rate of 4.6 million m^(3) yr^(-1) in the post-TGP periods(2003–2016), and erosion on heads and upstream margins of point bars was a general adjustment pattern in the 12 bends.The most significant morphological changes of point bars and banks occurred in 2006–2011,indicating a delayed response of the channel evolution of the LJR to damming. Detailed observations suggested that the medium discharges(16,000–18,000 m^(3) s^(-1)) were the most contributive discharges in shaping the morphology of point bars and banks in the LJR after damming. In addition, we revealed the importance of sediment supply on meander deformation of the LJR, driven by sediment exchange over point bars, and more upstream planform deformation tended to occur in bends with high sinuosity(>2.0) in the LJR after damming.The relationship between meander deformation and sinuosity was manifested through the geometric adjustment range of point bars. The morphological adjustments of point bars in the highly curved or compound bends of the LJR were more conducive to cause flow deflections,leading to form concave-bank bars after the TGP operation.
基金Project supported by the National Natural Science Foundation of China (Grant No:59890200) the Ministry of Water Resources of
文摘Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized cha nnel equilibrium profile. The variation of the longitudinal equilibrium profile, and the r elation with the condition of the inflow water and sediment from the upper reach were analyzed. Meanwhile, the numerical simulation results were compared with t he corresponding theoretical results. Finally, the equilibrium longitudinal slop e variations and its impact on flood control were analyzed after the sediment tr ansport process has changed.