Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ra...Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ratio of (1.5.) The second order full extension ETG finite element method was developed by Wang and He. By means of Taylor expansion of terms containing time derivative, time derivative is replaced by space derivative. The function of it is equal to introducing an artificial viscosity term. The streamlines of the flow at different moments were obtained. The time history of drag coefficient, lift coefficient and the streamwise velocity on the symmetrical points were presented. Furthermore, the symmetrical problem of the frequency spectrum of flow around two square cylinders arranged side by side were studied by using the spectral analysis technology. The data obtained at the initial stage are excluded in order to avoid the influence of initial condition on the results. The power spectrums of drag coefficient, lift coefficient, the streamwise velocity on the symmetrical points were analyzed respectively. The results show that although the time domain process of dynamic parameters is non-symmetrical, the frequency domain process of them is symmetrical under the symmetrical boundary conditions.展开更多
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split i...In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.展开更多
为比较最小二乘有限元法(Least Square Finite Element Method,LSFEM)和有限体积法在CFD应用中的优劣,采用最小二乘法离散不可压N-S方程的有限元模型,得到正定对称线性系统,采用高效的预处理共轭梯度法求解方程组;利用LSFEM和基于有限...为比较最小二乘有限元法(Least Square Finite Element Method,LSFEM)和有限体积法在CFD应用中的优劣,采用最小二乘法离散不可压N-S方程的有限元模型,得到正定对称线性系统,采用高效的预处理共轭梯度法求解方程组;利用LSFEM和基于有限体积法的FLUENT分别计算Kovasznay流动、定常二维和三维后台阶流动以及非定常圆柱绕流等4个实例并比较计算结果.结果表明,LSFEM比有限体积法的收敛性和精确性更好,在CFD领域的应用价值很高.展开更多
文摘Large eddy simulation cooperated with the second order full extension ETG(Euler-Taylor-Galerkin) finite element method was applied to simulate the flow around two square cylinders arranged side by side at a spacing ratio of (1.5.) The second order full extension ETG finite element method was developed by Wang and He. By means of Taylor expansion of terms containing time derivative, time derivative is replaced by space derivative. The function of it is equal to introducing an artificial viscosity term. The streamlines of the flow at different moments were obtained. The time history of drag coefficient, lift coefficient and the streamwise velocity on the symmetrical points were presented. Furthermore, the symmetrical problem of the frequency spectrum of flow around two square cylinders arranged side by side were studied by using the spectral analysis technology. The data obtained at the initial stage are excluded in order to avoid the influence of initial condition on the results. The power spectrums of drag coefficient, lift coefficient, the streamwise velocity on the symmetrical points were analyzed respectively. The results show that although the time domain process of dynamic parameters is non-symmetrical, the frequency domain process of them is symmetrical under the symmetrical boundary conditions.
基金financially supported by the National Natural Science Foundation of China(Grant No.51349011)the Foundation of Si’chuan Educational Committee(Grant No.17ZB0452)+1 种基金the Innovation Team Project of Si’chuan Educational Committee(Grant No.18TD0019)the Longshan Academic Talent Research Support Program of the Southwest of Science and Technology(Grant Nos.18LZX715 and 18LZX410)
文摘In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.
文摘为比较最小二乘有限元法(Least Square Finite Element Method,LSFEM)和有限体积法在CFD应用中的优劣,采用最小二乘法离散不可压N-S方程的有限元模型,得到正定对称线性系统,采用高效的预处理共轭梯度法求解方程组;利用LSFEM和基于有限体积法的FLUENT分别计算Kovasznay流动、定常二维和三维后台阶流动以及非定常圆柱绕流等4个实例并比较计算结果.结果表明,LSFEM比有限体积法的收敛性和精确性更好,在CFD领域的应用价值很高.