This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f...This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.展开更多
Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the furt...Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the further development.Herein,a novel carbon felt-Sn-carbon felt sandwich host(CSCH)is designed and constructed.Benefiting from the strong chemical absorption and the dehydration effect on Zn(H_(2)O)_(6)^(2+),the Sn activation layer in the CSCH demonstrates the lowest comprehensive resistance for Zn deposition.Thus,Zn is induced to nucleate preferentially on the Sn activation layer,and grows towards the membrane,regulating the spatial distribution of Zn electrochemical deposits,which remarkably improves the areal capacity and cyclic stability of Zn anode.Consequently,the zinc-bromine flow batteries equipped with CSCH electrodes can achieve the ultra-high areal capacity of 120 mA h cm^(-2)at 80 mA cm^(-2),and run stably for 140 h with average energy efficiency of 80.3%in the extreme condition(80 mA cm^(-2),80 mA h cm^(-2)).This innovative work will inspire future advanced designs for high areal capacity electrodes in ZFBs.展开更多
Based on the gap acceptance theory, the mixed traffic flow composed of r representative types of vehicles 1, 2,…, r vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flow ...Based on the gap acceptance theory, the mixed traffic flow composed of r representative types of vehicles 1, 2,…, r vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flow crossing m major lanes with M3 distributed headway on the unsignalized intersection is set up, and it is an extension of capacity model for one minor lane vehicle type crossing one major lane traffic flow.展开更多
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte...The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.展开更多
Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient...Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity.展开更多
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig...Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.展开更多
This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine...This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.展开更多
In the traffic equilibrium problem, we introduce capacity constraints of arcs, extend Beckmann’s formula to include these constraints, and give an algorithm for traffic equilibrium flows with capacity constraints on ...In the traffic equilibrium problem, we introduce capacity constraints of arcs, extend Beckmann’s formula to include these constraints, and give an algorithm for traffic equilibrium flows with capacity constraints on arcs. Using an example, we illustrate the application of the algorithm and show that Beckmann’s formula is a sufficient condition only, not a necessary condition, for traffic equilibrium with capacity constraints of arcs.展开更多
Summary:Changes of maximum expiratory flow at 25%and 50%of vital capacity(MEF2s and MEFso,respectively),and predominant parameters indicating small airways function in asthmatics before and after bronchodilator(BD)rev...Summary:Changes of maximum expiratory flow at 25%and 50%of vital capacity(MEF2s and MEFso,respectively),and predominant parameters indicating small airways function in asthmatics before and after bronchodilator(BD)reversibility test have been less interpreted.Our study aimed to investigate the clinical role of changes of MEF2s and MEFso before and after BD reversibility test in diagnosing asthma.Forced expiratory volume in the first second(FEV),MEF2s,and MEFso were measured before and after BD reversibility test in 207 asthmatic patients using standard process.Forty healthy individuals were enrolled as controls.Receiver operating characteristic(ROC)curve was used to assess the diagnostic accuracy of reversibility of MEF2s and MEFgo before and after BD reversibility test(OMEF 2s%and AMEF so%,respectively)in diagnosing asthma.Among these functional criteria,AMEF2;%and 0MEFs%≥25%performed the best diagnostic performance.The sensitivity,specificity,and accuracy of AMEF 25%≥25%as an objcctive diagnostic test for asthma were 63.29%,87.50%,and 67.21%,and of AMEFs0%≥25%were 79.23%,85.00%,and 80.16%,respectively.The area under the ROC curve of the indicators was 0.8203 and 0.9104,respectively.By contrast,an increase in FEV≥12%and 200 mL demonstrated a sensitivity of 62.32%,specificity of 82.50%,and accuracy of 65.59%in diagnosing asthma.The changes of MEF2s and MEFso before and after BD reversibility test may be of additional value in the clinical diagnosis of asthma,with cutoff values of 25%being the most.展开更多
Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity...Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.展开更多
A modified piano key weir with a rounded nose and a parapet wall (MPKW) can improve the discharge capacity significantly compared to a standard piano key weir. However, the optimum of the inlet/outlet width ratio (Wi/...A modified piano key weir with a rounded nose and a parapet wall (MPKW) can improve the discharge capacity significantly compared to a standard piano key weir. However, the optimum of the inlet/outlet width ratio (Wi/Wo) on the discharge efficiency of MPKW is still not investigated numerically. The present work utilized the numerical modeling to investigate and analyze the effects of the inlet/outlet key width ratios on the hydraulic characteristics and discharge capacity of the MPKW. To validate the numerical model with the experimental data, the results indicate that the average relative error is 2.96%, which confirms that the numerical model is fairly well to predictthe specifications of flow over on the MPKW. Numerical simulation results indicated that the discharge capacity of the MPKW can be improved up to 8.5% by optimizing the Wi/Wo ratio ranging from 1.53 to 1.67 even if the other parameters of the MPKW keep unchanged. A big Wi/Wo ratio generally leads to an increase in discharge capacity at low heads and a little effect on the discharge efficiency at high heads. The discharge efficiency of the inlet and outlet crests increases up to 9.6% for high heads, while discharge efficiency of the lateral crest decreases up to 23.5% compared with the reference model. The findings of the study revealed that the intrinsic influencing mechanism of the Wi/Wo ratio on the discharge performance of MPKWs.展开更多
Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an...Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.展开更多
To determinate the expressway capacity near a bus bay stop with an access, capacity models on the expressway near a bus stop with an access were developed on the basis of gap acceptance theory and queuing theory. Depe...To determinate the expressway capacity near a bus bay stop with an access, capacity models on the expressway near a bus stop with an access were developed on the basis of gap acceptance theory and queuing theory. Depending on a bus stop position to an entrance or an exit ramp, the capacity models were developed for four cases. Bus bay stops with overflow and bus bay stops without overflow were considered. A comparison of simulation experiment and model calculation was carried out. Results show that the suggested models have high accuracy and reliability, at bus arrival rate below 60 vehicles per hour(veh/h) or vehicle volumes at the entrance and the exit below 200 passenger cars units per hour(pcu/h), and there are no significant difference in the capacities for four cases. When bus arrival rate is above 240 veh/h, the capacities of all four cases will decline rapidly. With berth number increasing, the increasing of the capacities is no obvious for four cases. As the bus arrival rate and vehicle volumes at the entrance and the exit increase, bus stops located downstream of an entrance and upstream of an exit have a remarkably effect on the capacities. The latter case is much heavier than the former. Those results can be used to traffic design and optimization on urban expressway near a bus stop with an access.展开更多
The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on...The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on the cutter-suction capacity.The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field,the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration.The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than1000m3/h.However,when it is more than1000m3/h,it is helpless.When the cutter-head rotate speed is within the range of10–25r/min,the cutter-suction efficiency stabilizes at about95%.While the speed is greater than25r/min,the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed.With the increase of cutting depth,the cutter-suction efficiency first increases and then remains stable and finally decreases.The cutter-suction efficiency remains at about94%when the suction port position deviation ranges from0°to30°,but it has a sharply reduction when the deviation angle is more than30°.展开更多
A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selectio...A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.展开更多
To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actua...To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actual traffic situation, the concept of borrowed priority, in which the majorroad bicycles borrow the priority of major-road cars to enter the intersections when consecutive headway for major-steam cars is lower than the critical gap for minor-road cars, was addressed. Bicycle capacity at a typical unsignalized intersection is derived by the addition-conflict-flow procedure. The proposes model was validated by the empirical investigation. Numerical results show that bicycle capacity at an intersection is the function of major-road and minor-road car streams. Bicycle capacity increases with increasing major-road cars but decreases with increasing minorroad cars.展开更多
文摘This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.
基金supported by the National Natural Science Foundation of China(22179019)the Natural Science Foundation of Hebei Province,China(B2020501003)the Fundamental Research Funds for the Central Universities(N2023030)。
文摘Zinc-based flow batteries(ZFBs)have aroused great favor in large-scale energy storage due to the high security and low cost.However,the low areal capacity arising from the limited space for Zn plating hinders the further development.Herein,a novel carbon felt-Sn-carbon felt sandwich host(CSCH)is designed and constructed.Benefiting from the strong chemical absorption and the dehydration effect on Zn(H_(2)O)_(6)^(2+),the Sn activation layer in the CSCH demonstrates the lowest comprehensive resistance for Zn deposition.Thus,Zn is induced to nucleate preferentially on the Sn activation layer,and grows towards the membrane,regulating the spatial distribution of Zn electrochemical deposits,which remarkably improves the areal capacity and cyclic stability of Zn anode.Consequently,the zinc-bromine flow batteries equipped with CSCH electrodes can achieve the ultra-high areal capacity of 120 mA h cm^(-2)at 80 mA cm^(-2),and run stably for 140 h with average energy efficiency of 80.3%in the extreme condition(80 mA cm^(-2),80 mA h cm^(-2)).This innovative work will inspire future advanced designs for high areal capacity electrodes in ZFBs.
文摘Based on the gap acceptance theory, the mixed traffic flow composed of r representative types of vehicles 1, 2,…, r vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flow crossing m major lanes with M3 distributed headway on the unsignalized intersection is set up, and it is an extension of capacity model for one minor lane vehicle type crossing one major lane traffic flow.
基金financial support from the Youth Science and Technology Innovation Team of Southwest Petroleum University(No.2018CXTD10)the National Natural Science Foundation Project of China(No.51874248 and No.U19B2010).
文摘The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.
基金Project(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(05-0686) supported by the Program for New Century Excellent Talents in University
文摘Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity.
文摘Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.
文摘This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.
文摘In the traffic equilibrium problem, we introduce capacity constraints of arcs, extend Beckmann’s formula to include these constraints, and give an algorithm for traffic equilibrium flows with capacity constraints on arcs. Using an example, we illustrate the application of the algorithm and show that Beckmann’s formula is a sufficient condition only, not a necessary condition, for traffic equilibrium with capacity constraints of arcs.
基金This project was supported by the National Natural Science Foundation of China(No.81970024)partly by Scientific Research Project of Wuhan Health Committee(No.WX16C45).
文摘Summary:Changes of maximum expiratory flow at 25%and 50%of vital capacity(MEF2s and MEFso,respectively),and predominant parameters indicating small airways function in asthmatics before and after bronchodilator(BD)reversibility test have been less interpreted.Our study aimed to investigate the clinical role of changes of MEF2s and MEFso before and after BD reversibility test in diagnosing asthma.Forced expiratory volume in the first second(FEV),MEF2s,and MEFso were measured before and after BD reversibility test in 207 asthmatic patients using standard process.Forty healthy individuals were enrolled as controls.Receiver operating characteristic(ROC)curve was used to assess the diagnostic accuracy of reversibility of MEF2s and MEFgo before and after BD reversibility test(OMEF 2s%and AMEF so%,respectively)in diagnosing asthma.Among these functional criteria,AMEF2;%and 0MEFs%≥25%performed the best diagnostic performance.The sensitivity,specificity,and accuracy of AMEF 25%≥25%as an objcctive diagnostic test for asthma were 63.29%,87.50%,and 67.21%,and of AMEFs0%≥25%were 79.23%,85.00%,and 80.16%,respectively.The area under the ROC curve of the indicators was 0.8203 and 0.9104,respectively.By contrast,an increase in FEV≥12%and 200 mL demonstrated a sensitivity of 62.32%,specificity of 82.50%,and accuracy of 65.59%in diagnosing asthma.The changes of MEF2s and MEFso before and after BD reversibility test may be of additional value in the clinical diagnosis of asthma,with cutoff values of 25%being the most.
基金Supported by the National Natural Science Foundation of China(50478071)
文摘Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.
文摘A modified piano key weir with a rounded nose and a parapet wall (MPKW) can improve the discharge capacity significantly compared to a standard piano key weir. However, the optimum of the inlet/outlet width ratio (Wi/Wo) on the discharge efficiency of MPKW is still not investigated numerically. The present work utilized the numerical modeling to investigate and analyze the effects of the inlet/outlet key width ratios on the hydraulic characteristics and discharge capacity of the MPKW. To validate the numerical model with the experimental data, the results indicate that the average relative error is 2.96%, which confirms that the numerical model is fairly well to predictthe specifications of flow over on the MPKW. Numerical simulation results indicated that the discharge capacity of the MPKW can be improved up to 8.5% by optimizing the Wi/Wo ratio ranging from 1.53 to 1.67 even if the other parameters of the MPKW keep unchanged. A big Wi/Wo ratio generally leads to an increase in discharge capacity at low heads and a little effect on the discharge efficiency at high heads. The discharge efficiency of the inlet and outlet crests increases up to 9.6% for high heads, while discharge efficiency of the lateral crest decreases up to 23.5% compared with the reference model. The findings of the study revealed that the intrinsic influencing mechanism of the Wi/Wo ratio on the discharge performance of MPKWs.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.
基金Project(2012CB723303)supported by National Basic Research Program of China
文摘To determinate the expressway capacity near a bus bay stop with an access, capacity models on the expressway near a bus stop with an access were developed on the basis of gap acceptance theory and queuing theory. Depending on a bus stop position to an entrance or an exit ramp, the capacity models were developed for four cases. Bus bay stops with overflow and bus bay stops without overflow were considered. A comparison of simulation experiment and model calculation was carried out. Results show that the suggested models have high accuracy and reliability, at bus arrival rate below 60 vehicles per hour(veh/h) or vehicle volumes at the entrance and the exit below 200 passenger cars units per hour(pcu/h), and there are no significant difference in the capacities for four cases. When bus arrival rate is above 240 veh/h, the capacities of all four cases will decline rapidly. With berth number increasing, the increasing of the capacities is no obvious for four cases. As the bus arrival rate and vehicle volumes at the entrance and the exit increase, bus stops located downstream of an entrance and upstream of an exit have a remarkably effect on the capacities. The latter case is much heavier than the former. Those results can be used to traffic design and optimization on urban expressway near a bus stop with an access.
基金Project(51775561)supported by the National Natural Science Foundation of ChinaProject(20130162110004)supported by the National Doctoral Foundation of China
文摘The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on the cutter-suction capacity.The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field,the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration.The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than1000m3/h.However,when it is more than1000m3/h,it is helpless.When the cutter-head rotate speed is within the range of10–25r/min,the cutter-suction efficiency stabilizes at about95%.While the speed is greater than25r/min,the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed.With the increase of cutting depth,the cutter-suction efficiency first increases and then remains stable and finally decreases.The cutter-suction efficiency remains at about94%when the suction port position deviation ranges from0°to30°,but it has a sharply reduction when the deviation angle is more than30°.
基金supported by State Grid Corporation’s Science and Technology Project“Research and Demonstration of Technical Measures for Improving Voltage Supporting Capacity of Large-scale Urban Power Grid”(52094016000Y)
文摘A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.
基金Supported by the National Basic Research Program of China (2012CB725400)the National Natural Science Foundation of China(70901005+2 种基金7107101671131001)Fundamental Research Funds for the Central Universities(2011JBM055)
文摘To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actual traffic situation, the concept of borrowed priority, in which the majorroad bicycles borrow the priority of major-road cars to enter the intersections when consecutive headway for major-steam cars is lower than the critical gap for minor-road cars, was addressed. Bicycle capacity at a typical unsignalized intersection is derived by the addition-conflict-flow procedure. The proposes model was validated by the empirical investigation. Numerical results show that bicycle capacity at an intersection is the function of major-road and minor-road car streams. Bicycle capacity increases with increasing major-road cars but decreases with increasing minorroad cars.