Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimen...Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.展开更多
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence char...The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.展开更多
The existence of vegetation plays an important role to protect the ecosystem and water environment in natural rivers and wetlands, but it alters the velocity field of flow, consequently influencing the transport of po...The existence of vegetation plays an important role to protect the ecosystem and water environment in natural rivers and wetlands, but it alters the velocity field of flow, consequently influencing the transport of pollutant and biomass. As a pre-requisite for the analysis of environmental capacity in a channel, the vertical velocity distribution of flows has attracted much research attention;however, there is yet lack of a good prediction model available. For the channel with submerged vegetation, the vertical velocity distribution in the lower vegetation layer will be different from that in the upper flow layer of non-vegetation. In this paper, after review on the most recent two-layer model proposed by Baptist et al., the author has proposed an improved two-layer analytical model by introducing a different mixing length scale (λ). The proposed model is based on the momentum equation of flow with the turbulent eddy viscosity assumed as a linear relationship with the local velocity. The proposed model is compared with the Baptist model for different datasets published in the literature, which shows that the proposed analytical model can improve the vertical velocity distribution prediction well compared with the Baptist model for a range of data. This study reveals that the λ is well related with the submergence of vegetation (H/h), as suggested by . When the constant β is taken as 3/100, the proposed model shows good agreement with a wide range of datasets studied: flow depth (H)/vegetation height (h) in 1.25 to 3.33, different vegetation densities of a in 1.1 to 18.5 m−1 (a defined as the frontal area of the vegetation per unit volume), and bed slopes in (1.38 - 4.0) × 10−3.展开更多
In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by mean...In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily.展开更多
The present study deals with the analysis of heat transfer of the unsteady Maxwell nanofluid flow in a squeezed rotating channel of a porous extensile surface subject to the velocity and thermal slip effects incorpora...The present study deals with the analysis of heat transfer of the unsteady Maxwell nanofluid flow in a squeezed rotating channel of a porous extensile surface subject to the velocity and thermal slip effects incorporating the theory of heat flow intensity of Cattaneo-Christov model for the expression of the energy distribution in preference to the classical Fourier’s law. A set of transformations is occupied to renovate the current model in a system of nonlinear ordinary differential equations that are numerically decoded with the help of MATLAB integrated function bvp4c. The effects of various flow control parameters are investigated for the momentum, temperature and diffusion profiles, as well as for the wall shearing stress and the heat and mass transfer. The results are finally described from the material point of view. A comparison of heat flux models of Cattaneo-Christov and Fourier is also performed. An important result from the present work is that the squeezing parameter is strong enough in the middle of the channel to retard the fluid flow.展开更多
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical si...In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.展开更多
Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establis...Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases.展开更多
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the paramete...Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.展开更多
The present analysis shows that the EVM can not reflect the turbulence physics in non-inertial frame. The effects of Coriolis force on turbulence is embodied naturally in the Reynolds-stress transport equation. It is ...The present analysis shows that the EVM can not reflect the turbulence physics in non-inertial frame. The effects of Coriolis force on turbulence is embodied naturally in the Reynolds-stress transport equation. It is observed that the existing second-moment closure model with appropriate near-wall treatment can adequately predict flows in rotating channel and in axially rotating pipe for moderate rotation rate.展开更多
The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel f...The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel flow with polymer solutions. It has been observed that in all drag reduction regimes from the onset of DR to maximum drag reduction (MDR) limit, the Deborah number is defined as the product of an effective Weissenberg number, and the root mean square streamwise vorticity fluctuation remains O(1) in the near wall region. The ratio of the average lifetime of axial vortices to the vortex rotating duration decreases with increasing DR, and MDR is achieved when these time scales become nearly equal. Based on these observations a simple framework is proposed adequately to describe the influence of polymer additives on the extent of DR from onset to MDR as well as the universality of the MDR in flow systems with polymer additives.展开更多
The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and ban...The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).展开更多
The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airway...The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airways of human lungs is considered. The basis of a lumped parameter model or a transport equation is modeled during the inspiration process, when oxygen enters into the human lung channel. The quantitative measurements of oxygen are detached and the model equation is solved numerically by explicit finite difference schemes. Numerical simulations were made for natural breathing conditions or normal breathing conditions. The respiratory flow results for the resting conditions are found strongly dependent on the AD effect with some contribution of the unsteadiness effect. The contour of the flow rate region is labeled and AD effects are compared with the variation of small intervals of time for a constant velocity when breathing is interrupted for a negligible moment.展开更多
In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a ...In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows(EWEIF...This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows(EWEIF) uses dynamic constraints in conjunction with projections of data onto parabolic cylinder functions to determine the amplitude of all equatorial waves.EWEIF allows us to decompose an instantaneous wave flow into individual equatorial waves with a presumed equivalent depth without using temporal or spatial filtering a priori.Three sets of EWEIF analyses are presented. The first set is to confirm that EWEIF is capable of recovering the individual waves constructed from theoretical equatorial wave solutions under various scenarios. The other two sets demonstrate the ability of the EWEIF method to derive time series of individual equatorial waves from instantaneous wave fields without knowing a priori exactly which waves exist in the data as well as their spatial and temporal scales using outputs of an equatorial β-channel shallow-water model and ERA-Interim data. The third set of demonstrations shows, for the first time, the continuous evolutions of individual equatorial waves in the stratosphere whose amplitude is synchronized with the background zonal wind as predicted by quasi-biennial oscillation theory.展开更多
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 3 72 0 90 )
文摘Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.
文摘The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
文摘The existence of vegetation plays an important role to protect the ecosystem and water environment in natural rivers and wetlands, but it alters the velocity field of flow, consequently influencing the transport of pollutant and biomass. As a pre-requisite for the analysis of environmental capacity in a channel, the vertical velocity distribution of flows has attracted much research attention;however, there is yet lack of a good prediction model available. For the channel with submerged vegetation, the vertical velocity distribution in the lower vegetation layer will be different from that in the upper flow layer of non-vegetation. In this paper, after review on the most recent two-layer model proposed by Baptist et al., the author has proposed an improved two-layer analytical model by introducing a different mixing length scale (λ). The proposed model is based on the momentum equation of flow with the turbulent eddy viscosity assumed as a linear relationship with the local velocity. The proposed model is compared with the Baptist model for different datasets published in the literature, which shows that the proposed analytical model can improve the vertical velocity distribution prediction well compared with the Baptist model for a range of data. This study reveals that the λ is well related with the submergence of vegetation (H/h), as suggested by . When the constant β is taken as 3/100, the proposed model shows good agreement with a wide range of datasets studied: flow depth (H)/vegetation height (h) in 1.25 to 3.33, different vegetation densities of a in 1.1 to 18.5 m−1 (a defined as the frontal area of the vegetation per unit volume), and bed slopes in (1.38 - 4.0) × 10−3.
文摘In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily.
文摘The present study deals with the analysis of heat transfer of the unsteady Maxwell nanofluid flow in a squeezed rotating channel of a porous extensile surface subject to the velocity and thermal slip effects incorporating the theory of heat flow intensity of Cattaneo-Christov model for the expression of the energy distribution in preference to the classical Fourier’s law. A set of transformations is occupied to renovate the current model in a system of nonlinear ordinary differential equations that are numerically decoded with the help of MATLAB integrated function bvp4c. The effects of various flow control parameters are investigated for the momentum, temperature and diffusion profiles, as well as for the wall shearing stress and the heat and mass transfer. The results are finally described from the material point of view. A comparison of heat flux models of Cattaneo-Christov and Fourier is also performed. An important result from the present work is that the squeezing parameter is strong enough in the middle of the channel to retard the fluid flow.
基金supported by the National Natural Science Foundation of China(10472053 and 10772098)
文摘In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.
基金financially supported by the National Natural Science Foundation of China(Grant No.51479122)the National Key Research and Development Program of China(Grant No.2017YFC0405400)
文摘Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases.
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
基金supported by the Chinese Jiangsu Provincial Natural Science Foundation (Grant No. BK2001017)
文摘Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
基金The project supported by the National Natural Science Foundation of ChinaState Education Commission and Tsinghua University
文摘The present analysis shows that the EVM can not reflect the turbulence physics in non-inertial frame. The effects of Coriolis force on turbulence is embodied naturally in the Reynolds-stress transport equation. It is observed that the existing second-moment closure model with appropriate near-wall treatment can adequately predict flows in rotating channel and in axially rotating pipe for moderate rotation rate.
基金Project (10672069) supported by the National Natural Science Foundation of China
文摘The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel flow with polymer solutions. It has been observed that in all drag reduction regimes from the onset of DR to maximum drag reduction (MDR) limit, the Deborah number is defined as the product of an effective Weissenberg number, and the root mean square streamwise vorticity fluctuation remains O(1) in the near wall region. The ratio of the average lifetime of axial vortices to the vortex rotating duration decreases with increasing DR, and MDR is achieved when these time scales become nearly equal. Based on these observations a simple framework is proposed adequately to describe the influence of polymer additives on the extent of DR from onset to MDR as well as the universality of the MDR in flow systems with polymer additives.
文摘The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).
文摘The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airways of human lungs is considered. The basis of a lumped parameter model or a transport equation is modeled during the inspiration process, when oxygen enters into the human lung channel. The quantitative measurements of oxygen are detached and the model equation is solved numerically by explicit finite difference schemes. Numerical simulations were made for natural breathing conditions or normal breathing conditions. The respiratory flow results for the resting conditions are found strongly dependent on the AD effect with some contribution of the unsteadiness effect. The contour of the flow rate region is labeled and AD effects are compared with the variation of small intervals of time for a constant velocity when breathing is interrupted for a negligible moment.
文摘In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金supported by grants from the National Science Foundation(Grant No.AGS-1354834)the NASA Interdisciplinary Studies Program(Grant No.NNH12ZDA001NIDS)
文摘This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows(EWEIF) uses dynamic constraints in conjunction with projections of data onto parabolic cylinder functions to determine the amplitude of all equatorial waves.EWEIF allows us to decompose an instantaneous wave flow into individual equatorial waves with a presumed equivalent depth without using temporal or spatial filtering a priori.Three sets of EWEIF analyses are presented. The first set is to confirm that EWEIF is capable of recovering the individual waves constructed from theoretical equatorial wave solutions under various scenarios. The other two sets demonstrate the ability of the EWEIF method to derive time series of individual equatorial waves from instantaneous wave fields without knowing a priori exactly which waves exist in the data as well as their spatial and temporal scales using outputs of an equatorial β-channel shallow-water model and ERA-Interim data. The third set of demonstrations shows, for the first time, the continuous evolutions of individual equatorial waves in the stratosphere whose amplitude is synchronized with the background zonal wind as predicted by quasi-biennial oscillation theory.