期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
材料特性对输送脉动流体的粘弹性轴向功能梯度管非线性动力行为的影响 被引量:2
1
作者 付光明 庹宇航 +4 位作者 张贺恩 苏健 孙宝江 王锴 娄敏 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期247-259,共13页
The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and resea... The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation. 展开更多
关键词 Axially functionally graded pipe pipe conveying pulsating flow Integral transforms Nonlinear dynamics Chaotic motion Quasi-periodic motion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部