In this paper, the computational results of a gas-particle two phase flow in a bend with a rectangular cross-section is presented. The movement of the particles in a curved pipe is numerically analyzed by using random...In this paper, the computational results of a gas-particle two phase flow in a bend with a rectangular cross-section is presented. The movement of the particles in a curved pipe is numerically analyzed by using random statistical method. The zones and rate of erosion on the wall in a bend are determined. The results are in accordance with the experiment, which indicate that the erosion is influenced by gas velocity, particle size and bend curvature.展开更多
The European Commission's Thematic Strategy for Soil Protection(COM(2012)46)identified soil erosion as an important threat to European Union's(EU)soil resources.Gully erosion is an important but hitherto poorl...The European Commission's Thematic Strategy for Soil Protection(COM(2012)46)identified soil erosion as an important threat to European Union's(EU)soil resources.Gully erosion is an important but hitherto poorly understood component of this threat.Here we present the results of an unprecedented attempt to monitor the occurrence of gully erosion across the EU and UK.We integrate a soil erosion module into the 2018 LUCAS Topsoil Survey,which was conducted to monitor the soil health status across the EU and to support actions to prevent soil degradation.We discuss and explore opportunities to further improve this method.The 2018 LUCAS Topsoil Survey consisted of soil sampling(0-20 cm depth)and erosion observations conducted in ca.10%(n=24,759)of the 238,077 Land Use/Cover Area frame Survey(LUCAS)2018 in-field survey sites.Gully erosion channels were detected for ca.1%(211 sites)of the visited LUCAS Topsoil sites.Commission(false positives,2.5%)and omission errors(false negatives,5.6%)were found to be low and at a level that could not compromise the representativeness of the gully erosion survey.Overall,the findings indicate that the tested 2018 LUCAS Topsoil in-field gully erosion monitoring system is effective for detecting the incidence of gully erosion.The morphogenesis of the mapped gullies suggests that the approach is an effective tool to map permanent gullies,whereas it appears less effective to detect short-lived forms like ephemeral gullies.Spatial patterns emerging from the LUCAS Topsoil field observations provide new insights on typical gully formation sites across the EU and UK.This can help to design further targeted research activities.An extension of this approach to all LUCAS sites of 2022 would significantly enhance our understanding of the geographical distribution of gully erosion processes across the EU.Repeated every three years,LUCAS soil erosion surveys would contribute to assess the state of gully erosion in the EU over time.It will also enable monitoring and eventually predicting the dynamics of gully erosion.Data collected were part of the publicly available Gully Erosion LUCAS visual assessment(GE-LUCAS v1.0)inventory.展开更多
文摘In this paper, the computational results of a gas-particle two phase flow in a bend with a rectangular cross-section is presented. The movement of the particles in a curved pipe is numerically analyzed by using random statistical method. The zones and rate of erosion on the wall in a bend are determined. The results are in accordance with the experiment, which indicate that the erosion is influenced by gas velocity, particle size and bend curvature.
基金Pasquale Borrelli was funded by the EcoSSSoil Project,Korea Environmental Industry&Technology Institute(KEITI),Korea(Grant No.2019002820004).
文摘The European Commission's Thematic Strategy for Soil Protection(COM(2012)46)identified soil erosion as an important threat to European Union's(EU)soil resources.Gully erosion is an important but hitherto poorly understood component of this threat.Here we present the results of an unprecedented attempt to monitor the occurrence of gully erosion across the EU and UK.We integrate a soil erosion module into the 2018 LUCAS Topsoil Survey,which was conducted to monitor the soil health status across the EU and to support actions to prevent soil degradation.We discuss and explore opportunities to further improve this method.The 2018 LUCAS Topsoil Survey consisted of soil sampling(0-20 cm depth)and erosion observations conducted in ca.10%(n=24,759)of the 238,077 Land Use/Cover Area frame Survey(LUCAS)2018 in-field survey sites.Gully erosion channels were detected for ca.1%(211 sites)of the visited LUCAS Topsoil sites.Commission(false positives,2.5%)and omission errors(false negatives,5.6%)were found to be low and at a level that could not compromise the representativeness of the gully erosion survey.Overall,the findings indicate that the tested 2018 LUCAS Topsoil in-field gully erosion monitoring system is effective for detecting the incidence of gully erosion.The morphogenesis of the mapped gullies suggests that the approach is an effective tool to map permanent gullies,whereas it appears less effective to detect short-lived forms like ephemeral gullies.Spatial patterns emerging from the LUCAS Topsoil field observations provide new insights on typical gully formation sites across the EU and UK.This can help to design further targeted research activities.An extension of this approach to all LUCAS sites of 2022 would significantly enhance our understanding of the geographical distribution of gully erosion processes across the EU.Repeated every three years,LUCAS soil erosion surveys would contribute to assess the state of gully erosion in the EU over time.It will also enable monitoring and eventually predicting the dynamics of gully erosion.Data collected were part of the publicly available Gully Erosion LUCAS visual assessment(GE-LUCAS v1.0)inventory.