The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the ...The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the results of dedicated rock breaking drilling experiments.The numerical results show that the nozzle velocity and dynamic pressure of the nozzle decrease with an increase in the jet distance,and the axial velocity of the nozzle decays regularly with an increase in the dimensionless jet distance.Moreover,the axial velocity related to the nozzle with inclination angle 20°and 30°can produce a higher hole depth,while the radial velocity of the nozzle with 60°inclination can enlarge the hole diameter.The outcomes of the CFD simulations are consistent with the actual dynamic rock breaking and pore forming process,which lends credence to the present results and indicates that they could be used as a reference for the future optimization of systems based on the multi-hole combined external rotary bit technology.展开更多
To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collec...To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.展开更多
The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regressi...The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing.展开更多
The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for th...The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.展开更多
A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influen...A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influence of flow drag force on slope stability;(2)back-analyze the movement process of debris flow.First,the geological background and movement of this debris flow were described based on a field investigation.Then,drag force,calculated by the laminar flow theory,is added to the slope stability calculation model,which elaborates the initiation process of this disaster.Moreover,dynamic simulation software(DAN3D)was used to simulate the kinematic process of the debris flow with a variety of combination models.The study shows that the terrace area can quickly produce surface runoff and create a drag force under rainfall conditions,which is the essential reason for the initiation of debris flow.In addition,the use of the FVV(Frictional-Voellmy-Voellmy)model is found to provide the best performance in simulating this type of debris flow,which reveals that it lasts approximately 200 s and that the maximum velocity is 12 m/s.展开更多
Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the ...Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
The concept of process intensification(PI) has absorbed diverse definitions and stays true to the mission—'do more with less', which is an approach purposed by chemical engineers to solve the global energy &a...The concept of process intensification(PI) has absorbed diverse definitions and stays true to the mission—'do more with less', which is an approach purposed by chemical engineers to solve the global energy & environment problems. To date, the focus of PI has been on processes mainly involving vapor/liquid systems. Based on the fundamental principles of vapor–liquid mass transfer process like distillation and absorption, there are three strategies to intensify interphase mass transfer: enhancing the overall driving force, improving the mass transfer coefficient and enlarging the vapor–liquid interfacial area. More specifically, this article herein provides an overview of various technologies to strengthen the vapor–liquid mass transfer, including application of external fields, addition of third substances, micro-chemical technology and usage of solid foam, with the objective to contribute to the future developments and potential applications of PI in scientific research and industrial sectors.展开更多
In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficu...In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.展开更多
This is a paper of analysis and research dealing with the dynamic process and pattern offibre in an electrostatic field. The paper first discusses the distribution of the electric field in spaceand describes in detail...This is a paper of analysis and research dealing with the dynamic process and pattern offibre in an electrostatic field. The paper first discusses the distribution of the electric field in spaceand describes in detail the various manners of electrification of fibres and the changing patternbefore and after their entrance into the field. It then introduces the gravity of the fibre and theforce of the airflow transporting the fibre, and finally, a group of motion equations from thefibre are derived. Replacing the parameters in the equations with the experimental data, the nu-merical solutions can be obtained and the motion loci in different environments will be drawn bythe computer. The loci conform basically with the results obtained by stroboflash photography.展开更多
On the basis of a three-dimensional non stationary model of a convective cloud with detailed description of dynamic, thermodynamic and microphysical processes, numerical experiments were conducted to study the formati...On the basis of a three-dimensional non stationary model of a convective cloud with detailed description of dynamic, thermodynamic and microphysical processes, numerical experiments were conducted to study the formation of parameters of convective clouds under unstable stratification of the atmosphere. Numerical experiments have been carried out to study the formation of convective processes in the atmosphere. The thermo hydrodynamic parameters in the zone of a thunderstorm cloud are determined, and regions with a vortex motion of air are identified. The main flows feeding the convective cloud in the mature stage are determined. Due to the means of visualization, the areas of formation and growth of precipitation particles are identified. In a three-dimensional form, the interaction of dynamic and thermodynamic processes is analyzed. The interaction of fields is manifested in the form of deformation of fields of thermodynamic parameters under the influence of dynamic processes. Trajectories of air streams around a cloud and the trajectories of drops in a cloud are determined. The results of numerical experiments confirm that dynamic processes significantly influence the formation of fields of thermodynamic parameters in the cloud, which also determine the course of microphysical processes and the nature of the growth of precipitation particles.展开更多
基金the Science and Technology Innovation and Entrepreneurship Fund of China Coal Technology Engineering Group(2019-TD-QN038,2019-TDQN017)Enterprise Independent Innovation Guidance Project(2018ZDXM05,2019YBXM30).
文摘The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the results of dedicated rock breaking drilling experiments.The numerical results show that the nozzle velocity and dynamic pressure of the nozzle decrease with an increase in the jet distance,and the axial velocity of the nozzle decays regularly with an increase in the dimensionless jet distance.Moreover,the axial velocity related to the nozzle with inclination angle 20°and 30°can produce a higher hole depth,while the radial velocity of the nozzle with 60°inclination can enlarge the hole diameter.The outcomes of the CFD simulations are consistent with the actual dynamic rock breaking and pore forming process,which lends credence to the present results and indicates that they could be used as a reference for the future optimization of systems based on the multi-hole combined external rotary bit technology.
文摘To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.
文摘The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing.
文摘The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.
基金supported by the National Natural Science Foundation of China(No.42077277)。
文摘A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influence of flow drag force on slope stability;(2)back-analyze the movement process of debris flow.First,the geological background and movement of this debris flow were described based on a field investigation.Then,drag force,calculated by the laminar flow theory,is added to the slope stability calculation model,which elaborates the initiation process of this disaster.Moreover,dynamic simulation software(DAN3D)was used to simulate the kinematic process of the debris flow with a variety of combination models.The study shows that the terrace area can quickly produce surface runoff and create a drag force under rainfall conditions,which is the essential reason for the initiation of debris flow.In addition,the use of the FVV(Frictional-Voellmy-Voellmy)model is found to provide the best performance in simulating this type of debris flow,which reveals that it lasts approximately 200 s and that the maximum velocity is 12 m/s.
基金supported by the Innovation Platform for Through Process Modeling and Simulation of Advanced Materials Processing Technologies(No.2012ZX04012011)the National Science Foundation of China(No.51575304)
文摘Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金Supported by the National Key Research and Development Program of China(2018YFB0604903)National Natural Science Foundation of China(21776202,21336007)Major Science and Technology Program for Water Pollution Control and Treatment(2015ZX07202-013)
文摘The concept of process intensification(PI) has absorbed diverse definitions and stays true to the mission—'do more with less', which is an approach purposed by chemical engineers to solve the global energy & environment problems. To date, the focus of PI has been on processes mainly involving vapor/liquid systems. Based on the fundamental principles of vapor–liquid mass transfer process like distillation and absorption, there are three strategies to intensify interphase mass transfer: enhancing the overall driving force, improving the mass transfer coefficient and enlarging the vapor–liquid interfacial area. More specifically, this article herein provides an overview of various technologies to strengthen the vapor–liquid mass transfer, including application of external fields, addition of third substances, micro-chemical technology and usage of solid foam, with the objective to contribute to the future developments and potential applications of PI in scientific research and industrial sectors.
基金the National Natural Science Foundation of China(10377006).
文摘In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.
文摘This is a paper of analysis and research dealing with the dynamic process and pattern offibre in an electrostatic field. The paper first discusses the distribution of the electric field in spaceand describes in detail the various manners of electrification of fibres and the changing patternbefore and after their entrance into the field. It then introduces the gravity of the fibre and theforce of the airflow transporting the fibre, and finally, a group of motion equations from thefibre are derived. Replacing the parameters in the equations with the experimental data, the nu-merical solutions can be obtained and the motion loci in different environments will be drawn bythe computer. The loci conform basically with the results obtained by stroboflash photography.
文摘On the basis of a three-dimensional non stationary model of a convective cloud with detailed description of dynamic, thermodynamic and microphysical processes, numerical experiments were conducted to study the formation of parameters of convective clouds under unstable stratification of the atmosphere. Numerical experiments have been carried out to study the formation of convective processes in the atmosphere. The thermo hydrodynamic parameters in the zone of a thunderstorm cloud are determined, and regions with a vortex motion of air are identified. The main flows feeding the convective cloud in the mature stage are determined. Due to the means of visualization, the areas of formation and growth of precipitation particles are identified. In a three-dimensional form, the interaction of dynamic and thermodynamic processes is analyzed. The interaction of fields is manifested in the form of deformation of fields of thermodynamic parameters under the influence of dynamic processes. Trajectories of air streams around a cloud and the trajectories of drops in a cloud are determined. The results of numerical experiments confirm that dynamic processes significantly influence the formation of fields of thermodynamic parameters in the cloud, which also determine the course of microphysical processes and the nature of the growth of precipitation particles.