Based on viscous drag-induced breakup mechanism, a simple model was proposed to predict the dripping droplet size as a function of controllable parameters in flow focusing micro devices. The size of thread before brea...Based on viscous drag-induced breakup mechanism, a simple model was proposed to predict the dripping droplet size as a function of controllable parameters in flow focusing micro devices. The size of thread before breakup was also investigated through laminar flow theory. Experiments and numerical simulations by VOF are carried out simultaneously to validate the theoretical analysis, showing that droplet size decreases rapidly with the increase of the flow rate ratio and capillary number.展开更多
A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing(CFF)in which a contraction zone is placed downstream of the dispersed phase nozzle.In this contraction zone,the dispersed-phase(dp...A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing(CFF)in which a contraction zone is placed downstream of the dispersed phase nozzle.In this contraction zone,the dispersed-phase(dphase)fluid is pinched off by continuous-phase(c-phase)fluid to generate micro-droplets.Studying the influence of multiple parameters such as the fluids velocities and viscosities,the interfacial tension,and nozzle and orifice diameters on the droplet size is of great importance for the design and application of CFF devices.Thus,development of more complete numerical models is required.In this paper,we show our model is compatible with experimental data and then numerically investigate the effects of aforementioned parameters on the droplet generation in a CFF microfluidic device.Simulation results showed that the c-phase flow rate,viscosity and the interfacial tension had great impacts on the droplet size.The effect of the nozzle diameter on the generated droplet size was small compared to that of the orifice in a CFF device.Using the simulation results,a correlation was also developed and suggested which predicts the droplet size with less than 15%error in a wide range of the introduced dimensionless parameters.展开更多
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three...The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.展开更多
The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field...The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field, and further explore the redistribution of the energy flow in the focal plane by designing different phase masks including fanlike phase masks and vortex phase masks on them. The flexibly controlled transverse energy flow rings of the tightly focused ellipticity-variant vector optical fields with and without phase masks can be used to transport multiple absorptive particles along certain paths, which may be widely applied in optical trapping and manipulation.展开更多
基金Supported by the National Natural Science Foundation of China(50876100)the Grade A Technology Development Foundation of USTC(ZC9850340103)
文摘Based on viscous drag-induced breakup mechanism, a simple model was proposed to predict the dripping droplet size as a function of controllable parameters in flow focusing micro devices. The size of thread before breakup was also investigated through laminar flow theory. Experiments and numerical simulations by VOF are carried out simultaneously to validate the theoretical analysis, showing that droplet size decreases rapidly with the increase of the flow rate ratio and capillary number.
基金project has received funding support from the Natural Sciences and Engineering Research Council of Canada(NSERC)to PR。
文摘A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing(CFF)in which a contraction zone is placed downstream of the dispersed phase nozzle.In this contraction zone,the dispersed-phase(dphase)fluid is pinched off by continuous-phase(c-phase)fluid to generate micro-droplets.Studying the influence of multiple parameters such as the fluids velocities and viscosities,the interfacial tension,and nozzle and orifice diameters on the droplet size is of great importance for the design and application of CFF devices.Thus,development of more complete numerical models is required.In this paper,we show our model is compatible with experimental data and then numerically investigate the effects of aforementioned parameters on the droplet generation in a CFF microfluidic device.Simulation results showed that the c-phase flow rate,viscosity and the interfacial tension had great impacts on the droplet size.The effect of the nozzle diameter on the generated droplet size was small compared to that of the orifice in a CFF device.Using the simulation results,a correlation was also developed and suggested which predicts the droplet size with less than 15%error in a wide range of the introduced dimensionless parameters.
基金Supported by the National Natural Science Foundation of China (Nos.40930845 and 41006031)the International Science & Technology Cooperation Program of China (No. 2010DFA21740)the National Science and Technology Major Project (No. 2011ZX05026-004-06)
文摘The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.
基金National Natural Science Foundation of China(NSFC)(11374166,11534006,11674184)National key research and development program of China(2017YFA0303700,2017YFA0303800)Natural Science Foundation of Tianjin City(16JC2DJC31300)
文摘The redistribution of the energy flow of tightly focused ellipticity-variant vector optical fields is presented.We theoretically design and experimentally generate this kind of ellipticity-variant vector optical field, and further explore the redistribution of the energy flow in the focal plane by designing different phase masks including fanlike phase masks and vortex phase masks on them. The flexibly controlled transverse energy flow rings of the tightly focused ellipticity-variant vector optical fields with and without phase masks can be used to transport multiple absorptive particles along certain paths, which may be widely applied in optical trapping and manipulation.