期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Numerical investigation of entropy generation and heat transfer of pulsating flow in a horizontal channel with an open cavity 被引量:2
1
作者 Fatma Zamzari Zouhaier Mehrez +2 位作者 Afif El Cafsi Ali Belghith Patrick Le Quéré 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期632-646,共15页
In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A num... In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A numerical method based on finite volume method is used to discretize the governing equations. At the inlet of the channel, pulsating velocity is imposed for a range of Strouhal numbers Stpfrom 0 to 1 and amplitude Apfrom 0 to 0.5. The effects of the governing parameters, such as frequency and amplitude of the pulsation, Richardson number, Ri, and aspect ratio of the cavity, L/H, on the flow field, temperature distribution, average Nusselt number and average entropy generation, are numerically analyzed. The results indicate that the heat transfer and entropy generation are strongly affected by the frequency and amplitude of the pulsation and this depends on the Richardson number and aspect ratio of the cavity. The pulsation is more effective with the aspect ratio of the cavity L/H= 1.5 in terms of heat transfer enhancement and entropy generation minimization. 展开更多
关键词 Pulsating flow entropy generation mixed convection heat transfer open cavity
原文传递
Cumulant-based correlated probabilistic load flowconsidering photovoltaic generation and electric vehiclecharging demand 被引量:1
2
作者 Nitesh Ganesh BHAT B. Rajanarayan PRUSTY Debashisha JENA 《Frontiers in Energy》 SCIE CSCD 2017年第2期184-196,共13页
This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus l... This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus load powers are probabilistically modeled in the case of transmission systems. In the case of distribution systems, the uncertainties pertaining to plug-in hybrid electric vehicle and battery electric vehicle charging demands in residential community as well as charging stations are probabilistically modeled. The probability distributions of the result variables (bus voltages and branch power flows) pertaining to these inputs are accurately established. The multiple input correlation cases are incorporated. Simultaneously, the performance of the proposed method is demonstrated on a modified Ward-Hale 6-bus system and an IEEE 14-bus transmission system as well as on a modified IEEE 69-bus radial and an IEEE 33-bus mesh distribution system. The results of the proposed method are compared with that of Monte-Carlo simulation. 展开更多
关键词 battery electric vehicle extended cumulant method photovoltaic generation plug-in hybrid electric vehicle probabilistic load flow
原文传递
Irreversibility analysis of unsteady couette flow with variable viscosity 被引量:1
3
作者 EEGUNJOBI A.S. MAKINDE O.D. +1 位作者 TSHEHLA M.S. FRANKS O. 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第2期304-310,共7页
This paper investigates numerically the inherent irreversibility in unsteady generalized Couette flow between two parallel plates with variable viscosity. The nonlinear governing equations are derived from the Navier-... This paper investigates numerically the inherent irreversibility in unsteady generalized Couette flow between two parallel plates with variable viscosity. The nonlinear governing equations are derived from the Navier-Stokes equations and solved numerically using a semi-discretization finite difference method together with the Runge-Kutta-Fehlberg integration scheme. The profiles of velocity and the temperature obtained are used to compute the entropy generation number, Bejan number, skin friction and Nusselt number. The effects of embedded parameters on entire flow structure are presented graphically and discussed quantitatively. 展开更多
关键词 parallel plates variable viscosity heat transfer Couette flow entropy generation
原文传递
On solving multi-commodity flow problems: An experimental evaluation
4
作者 Weibin DAI Jun ZHANG Xiaoqian SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1481-1492,共12页
Multi-commodity flow problems(MCFs) can be found in many areas, such as transportation, communication, and logistics. Therefore, such problems have been studied by a multitude of researchers, and a variety of method... Multi-commodity flow problems(MCFs) can be found in many areas, such as transportation, communication, and logistics. Therefore, such problems have been studied by a multitude of researchers, and a variety of methods have been proposed for solving it. However, most researchers only discuss the properties of different models and algorithms without taking into account the impacts of actual implementation. In fact, the true performance of a method may differ greatly across various implementations. In this paper, several popular optimization solvers for implementations of column generation and Lagrangian relaxation are discussed. In order to test scalability and optimality, three groups of networks with different structures are used as case studies. Results show that column generation outperforms Lagrangian relaxation in most instances, but the latter is better suited to networks with a large number of commodities. 展开更多
关键词 Multi-commodity flow problem Column generation Lagrangian relaxation Evaluation Implementation
原文传递
Biomass energy cost and feasibility of gasifier based biomass power generation system
5
作者 Khambalkar V P Kankal U S +1 位作者 Karale D S Gangde C N 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2013年第4期55-63,共9页
The present research work has been carried out on biomass based on 10 kW capacity gasifier power generation system installed at College of Agricultural Engineering and Technology,Dr.Panjabrao Deshmukh Agricultural Uni... The present research work has been carried out on biomass based on 10 kW capacity gasifier power generation system installed at College of Agricultural Engineering and Technology,Dr.Panjabrao Deshmukh Agricultural University(Dr.PDKV),Akola Maharashtra,India.The main objectives were to evaluate various costs and benefits involved in the power generation system.The costs of energy per unit were calculated for the first year of operation.The economics of gasifier based power generation system and thereby the feasibility of the system was examined by estimating per unit cost,Net Present Value(NPV),Benefit Cost Ratio(BCR),Internal Rate of Return(IRR)and payback period.The discount cash flow method was used to find out the IRR.In the present analysis,three costs viz.,installed capital cost,operation and maintenance cost,and levelised replacement cost were examined for the evaluation of the power generation per unit.Discount rate on investment in case of subsidy(Case I)and in case without subsidy(Case II)for installation cost of system was considered as 12.75%.The BCR comes in Case I for operating duration of 22 h,20 h,and 16 h are 1.24,1.18,and 1.13,respectively.Similarly for Case II BCR comes 1.44,1.38,and 2.39.The IRR comes in Case I for operating duration of 22 h,20 h,and 16 h are 26%,22%,and 19%,respectively.Similarly for Case II,IRR comes 52%,44%,and 39%for operating duration of 22 h,20 h,and 16 h,respectively.The payback period in the present analysis was worked out.The payback period for biomass based gasifier power generation system was observed to be for Case I from three to four years and for Case II it was one to two years. 展开更多
关键词 cost of biomass energy biomass power generation system discounted cash flow benefit cost ratio net present value payback period internal rate of return
原文传递
Zonal Jet Creation from Secondary Instability of Drift Waves for Plasma Edge Turbulence
6
作者 Di QI Andrew J.MAJDA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2019年第6期869-890,共22页
A new strategy is presented to explain the creation and persistence of zonal flows widely observed in plasma edge turbulence.The core physics in the edge regime of the magnetic-fusion tokamaks can be described qualita... A new strategy is presented to explain the creation and persistence of zonal flows widely observed in plasma edge turbulence.The core physics in the edge regime of the magnetic-fusion tokamaks can be described qualitatively by the one-state modified Hasegawa-Mima(MHM for short)model,which creates enhanced zonal flows and more physically relevant features in comparison with the familiar Charney-Hasegawa-Mima(CHM for short)model for both plasma and geophysical flows.The generation mechanism of zonal jets is displayed from the secondary instability analysis via nonlinear interactions with a background base state.Strong exponential growth in the zonal modes is induced due to a non-zonal drift wave base state in the MHM model,while stabilizing damping effect is shown with a zonal flow base state.Together with the selective decay effect from the dissipation,the secondary instability offers a complete characterization of the convergence process to the purely zonal structure.Direct numerical simulations with and without dissipation are carried out to confirm the instability theory.It shows clearly the emergence of a dominant zonal flow from pure non-zonal drift waves with small perturbation in the initial configuration.In comparison,the CHM model does not create instability in the zonal modes and usually converges to homogeneous turbulence. 展开更多
关键词 Zonal flow generation Drift wave turbulence Secondary instability Modified Hasegawa-Mima model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部