In recent years,with the introduction of the strategy to strengthen the country’s transportation infrastructure and the continuous implementation of new economic development models such as integrating transportation ...In recent years,with the introduction of the strategy to strengthen the country’s transportation infrastructure and the continuous implementation of new economic development models such as integrating transportation with tourism,various open service areas integrating highway service areas with local tourism have emerged nationwide.Examples include the Yangcheng Lake service area in Jiangsu and the Lengshui service area in Chongqing.This paper focuses on the design example of the Dazu Stone Carving service area on the Chongqing section of the Yurong Expressway,comprehensively considering factors such as construction scale,terrain conditions,and local urban planning.It analyzes and studies the traffic flow design of unilateral agglomerative open service areas around two vehicle traffic conversion links:between the main expressway and the service area,and between the service area and local roads.The aim is to provide a case study reference for similar projects.展开更多
By exploring the space and the design techniques of roof garden in Frank Gehry's Walt Disney Concert Hall, this paper made further research on the combination of architectural functions and pedestrian fl ow lines,...By exploring the space and the design techniques of roof garden in Frank Gehry's Walt Disney Concert Hall, this paper made further research on the combination of architectural functions and pedestrian fl ow lines, and attempted to summarize the unique design techniques of Frank Gehry by analyzing his works, improve and develop design theories of roof garden, and attract more attention from the public to roof garden design.展开更多
The gracefully merging dynamic form of the architectural style used in the Soho Galaxy urban complex along Beijing's East 2nd Ring Road creates a fluid and continuous external and internal space - embodying elements ...The gracefully merging dynamic form of the architectural style used in the Soho Galaxy urban complex along Beijing's East 2nd Ring Road creates a fluid and continuous external and internal space - embodying elements of Yunnan Province rice paddy terracing.展开更多
In this paper, an experimental investigation on the flow structures in a turbulent bounda- ry layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that ...In this paper, an experimental investigation on the flow structures in a turbulent bounda- ry layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that the high/low speed streaks are directly related to the hairpin or horseshoe-like vortices. This observation can give a better understanding of the physical mechanism in the turbulent boundary layer.展开更多
The complexity and uncertainty in power systems cause great challenges to controlling power grids.As a popular data-driven technique,deep reinforcement learning(DRL)attracts attention in the control of power grids.How...The complexity and uncertainty in power systems cause great challenges to controlling power grids.As a popular data-driven technique,deep reinforcement learning(DRL)attracts attention in the control of power grids.However,DRL has some inherent drawbacks in terms of data efficiency and explainability.This paper presents a novel hierarchical task planning(HTP)approach,bridging planning and DRL,to the task of power line flow regulation.First,we introduce a threelevel task hierarchy to model the task and model the sequence of task units on each level as a task planning-Markov decision processes(TP-MDPs).Second,we model the task as a sequential decision-making problem and introduce a higher planner and a lower planner in HTP to handle different levels of task units.In addition,we introduce a two-layer knowledge graph that can update dynamically during the planning procedure to assist HTP.Experimental results conducted on the IEEE 118-bus and IEEE 300-bus systems demonstrate our HTP approach outperforms proximal policy optimization,a state-of-the-art deep reinforcement learning(DRL)approach,improving efficiency by 26.16%and 6.86%on both systems.展开更多
Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit freque...Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.展开更多
In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows ar...In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows are solved on a coarse mesh while the interface is resolved on a fine mesh, was shown to significantly improve the computational efficiency when simulating multiphase flows. On the other hand, the DIIB method is able to resolve dynamic wetting on curved substrates on a Cartesian grid, but it usually requires a mesh of high resolution in the vicinity of a moving contact line to resolve the local flow. In the present study, we couple the DIIB method with the dual-resolution grid, to improve the interface resolution for flows with moving contact lines on curved solid walls at an affordable cost. The dynamic behavior of moving contact lines is validated by studying drop spreading, and the numerical results suggest that the effective slip length λ_n can be approximated by 1.9Cn, where Cn is a dimensionless measure of the thickness of the diffuse interface. We also apply the method to drop impact onto a convex substrate, and the results on the dual-resolution grid are in good agreement with those on a single-resolution grid. It shows that the axisymmetric simulations using the DIIB method on the dual-resolution grid saves nearly 60% of the computational time compared with that on a single-resolution grid.展开更多
In the current electricity paradigm, the rapid elevation of demands in industrial sector and the process of restructuring are the main causes for the overuse of transmission systems. Hence, the evolution of novel tech...In the current electricity paradigm, the rapid elevation of demands in industrial sector and the process of restructuring are the main causes for the overuse of transmission systems. Hence, the evolution of novel technology is the ultimate need to avoid the damages in the available transmission systems. An appreciable volume of renewable energy sources is used to produce electric power, after the implementation of deregulation in power system. Even though, they are intended to improve the reliability of power system, the unpredictable outages of generators or transmission lines, an impulsive increase in demand and the sudden failures of vital equipment cause transmission congestion in one or some transmission lines. Generation rescheduling and load shedding can be used to alleviate congestion, but some cases require quite few improved methods. With the extensive application of Distributed Generation (DG), congestion management is also performed by the optimal placement of DGs. Therefore, this research employs a Line Flow Sensitivity Factor (LFSF) and Particle Swarm Optimization (PSO) for the determination of optimal location and size of multiple DG units, respectively. This proposed problem is formulated to minimize the total system losses and real power flow performance index. This approach is experimented in modified IEEE-30 bus test system. The results of N-1 contingency analysis with DG units prove the competence of this proposed approach, since the total numbers of congested lines get reduced from 15 to 2. Hence, the results show that the proposed approach is robust and simple in alleviating transmission congestion by the optimal placement and sizing of multiple DG units.展开更多
Green manufacturing is a growing trend,and an effective layout design method for production lines can reduce resource wastage in processing.This study focuses on existing problems such as low equipment utilization,lon...Green manufacturing is a growing trend,and an effective layout design method for production lines can reduce resource wastage in processing.This study focuses on existing problems such as low equipment utilization,long standby time,and low logistics efficiency in a mixed-flow parallel production line.To reduce the energy consumption,a novel method considering an independent buffer configuration and idle energy consumption analysis is proposed for this production line’s layout design.A logistics intensity model and a machine tool availability model are established to investigate the influences of independent buffer area configuration on the logistics intensity and machine tool availability.To solve the coupling problem between machine tools in such production lines,a decoupling strategy for the relationship between machine tool processing rates is explored.An energy consumption model for the machine tools,based on an optimized configuration of independent buffers,is proposed.This model can effectively reduce the idle energy consumption of the machine tools while designing the workshop layout.Subsequently,considering the problems encountered in workshop production,a comprehensive optimization model for the mixed-flow production line is developed.To verify the effectiveness of the mathematical model,it is applied to an aviation cabin production line.The results indicate that it can effectively solve the layout problem of mixed-flow parallel production lines and reduce the idle energy consumption of machine tools during production.The proposed buffer configuration and layout design method can serve as a theoretical and practical reference for the layout design of mixed-flow parallel production lines.展开更多
This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroid...This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroidizing annealing(MSHFA). To this end, the present study mainly employed stereo microscopy, Optical Metallurgical Microscopy(OMM), Scanning Electron Microscopy(SEM), and Electron Backscatter Diffraction(EBSD) to characterize and analyze the workpiece at each processing stage of MSHF while performing microhardness measurement and uniaxial tensile experiment to test and analyze the mechanical properties of the workpiece. Macro-structure observation showed that the simulation results of flow lines at each stage were consistent with the experimental results. Microscopic observation showed that, after MSHF, deformation gradually became less significant along the outward radial direction of the bearing ring. After MSHFA,the microstructures of the bearing ring became uniform, whereas primary carbides did not dissolve.The mechanical properties were better in the axial direction(AD) than in the radial(RD) and circumferential directions(CD) after MSHF due to the smaller grain width. After MSHFA, the mechanical properties in the ADs and CDs were better than those in the RDs, which was due to the large cross-sectional area of carbides along the flow-line direction.展开更多
This paper extends a production-inventory model with one unreliable machine to one that hasn machines in series, separated by finite buffers. It is shown how customer service levels and otherperformance measures can b...This paper extends a production-inventory model with one unreliable machine to one that hasn machines in series, separated by finite buffers. It is shown how customer service levels and otherperformance measures can be calculated as a function of the availabilities of the machines and thesizes of the intermediate buffers.展开更多
In the spirit of Morse homology initiated by Witten and Floer,we construct two∞-categories A and B.The weak one A comes out of the Morse-Smale pairs and their higher homotopies,and the strict one B concerns the chain...In the spirit of Morse homology initiated by Witten and Floer,we construct two∞-categories A and B.The weak one A comes out of the Morse-Smale pairs and their higher homotopies,and the strict one B concerns the chain complexes of the Morse functions.Based on the boundary structures of the compactified moduli space of gradient flow lines of Morse functions with parameters,we build up a weak∞-functor F:A→B.Higher algebraic structures behind Morse homology are revealed with the perspective of defects in topological quantum field theory.展开更多
文摘In recent years,with the introduction of the strategy to strengthen the country’s transportation infrastructure and the continuous implementation of new economic development models such as integrating transportation with tourism,various open service areas integrating highway service areas with local tourism have emerged nationwide.Examples include the Yangcheng Lake service area in Jiangsu and the Lengshui service area in Chongqing.This paper focuses on the design example of the Dazu Stone Carving service area on the Chongqing section of the Yurong Expressway,comprehensively considering factors such as construction scale,terrain conditions,and local urban planning.It analyzes and studies the traffic flow design of unilateral agglomerative open service areas around two vehicle traffic conversion links:between the main expressway and the service area,and between the service area and local roads.The aim is to provide a case study reference for similar projects.
文摘By exploring the space and the design techniques of roof garden in Frank Gehry's Walt Disney Concert Hall, this paper made further research on the combination of architectural functions and pedestrian fl ow lines, and attempted to summarize the unique design techniques of Frank Gehry by analyzing his works, improve and develop design theories of roof garden, and attract more attention from the public to roof garden design.
文摘The gracefully merging dynamic form of the architectural style used in the Soho Galaxy urban complex along Beijing's East 2nd Ring Road creates a fluid and continuous external and internal space - embodying elements of Yunnan Province rice paddy terracing.
文摘In this paper, an experimental investigation on the flow structures in a turbulent bounda- ry layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that the high/low speed streaks are directly related to the hairpin or horseshoe-like vortices. This observation can give a better understanding of the physical mechanism in the turbulent boundary layer.
基金supported in part by the National Key R&D Program(2018AAA0101501)of Chinathe science and technology project of SGCC(State Grid Corporation of China).
文摘The complexity and uncertainty in power systems cause great challenges to controlling power grids.As a popular data-driven technique,deep reinforcement learning(DRL)attracts attention in the control of power grids.However,DRL has some inherent drawbacks in terms of data efficiency and explainability.This paper presents a novel hierarchical task planning(HTP)approach,bridging planning and DRL,to the task of power line flow regulation.First,we introduce a threelevel task hierarchy to model the task and model the sequence of task units on each level as a task planning-Markov decision processes(TP-MDPs).Second,we model the task as a sequential decision-making problem and introduce a higher planner and a lower planner in HTP to handle different levels of task units.In addition,we introduce a two-layer knowledge graph that can update dynamically during the planning procedure to assist HTP.Experimental results conducted on the IEEE 118-bus and IEEE 300-bus systems demonstrate our HTP approach outperforms proximal policy optimization,a state-of-the-art deep reinforcement learning(DRL)approach,improving efficiency by 26.16%and 6.86%on both systems.
基金supported by the National Science Foundation of China (grant Nos. 41271024, 41444430204, and J1210065)the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2016-266 and lzujbky2016-270)
文摘Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11425210,11621202 and 11672288)
文摘In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows are solved on a coarse mesh while the interface is resolved on a fine mesh, was shown to significantly improve the computational efficiency when simulating multiphase flows. On the other hand, the DIIB method is able to resolve dynamic wetting on curved substrates on a Cartesian grid, but it usually requires a mesh of high resolution in the vicinity of a moving contact line to resolve the local flow. In the present study, we couple the DIIB method with the dual-resolution grid, to improve the interface resolution for flows with moving contact lines on curved solid walls at an affordable cost. The dynamic behavior of moving contact lines is validated by studying drop spreading, and the numerical results suggest that the effective slip length λ_n can be approximated by 1.9Cn, where Cn is a dimensionless measure of the thickness of the diffuse interface. We also apply the method to drop impact onto a convex substrate, and the results on the dual-resolution grid are in good agreement with those on a single-resolution grid. It shows that the axisymmetric simulations using the DIIB method on the dual-resolution grid saves nearly 60% of the computational time compared with that on a single-resolution grid.
文摘In the current electricity paradigm, the rapid elevation of demands in industrial sector and the process of restructuring are the main causes for the overuse of transmission systems. Hence, the evolution of novel technology is the ultimate need to avoid the damages in the available transmission systems. An appreciable volume of renewable energy sources is used to produce electric power, after the implementation of deregulation in power system. Even though, they are intended to improve the reliability of power system, the unpredictable outages of generators or transmission lines, an impulsive increase in demand and the sudden failures of vital equipment cause transmission congestion in one or some transmission lines. Generation rescheduling and load shedding can be used to alleviate congestion, but some cases require quite few improved methods. With the extensive application of Distributed Generation (DG), congestion management is also performed by the optimal placement of DGs. Therefore, this research employs a Line Flow Sensitivity Factor (LFSF) and Particle Swarm Optimization (PSO) for the determination of optimal location and size of multiple DG units, respectively. This proposed problem is formulated to minimize the total system losses and real power flow performance index. This approach is experimented in modified IEEE-30 bus test system. The results of N-1 contingency analysis with DG units prove the competence of this proposed approach, since the total numbers of congested lines get reduced from 15 to 2. Hence, the results show that the proposed approach is robust and simple in alleviating transmission congestion by the optimal placement and sizing of multiple DG units.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Project of China(Grant No.2019ZX04024001)the Natural Science Foundation of Beijing Municipality(Grant No.3192003)+2 种基金the General Project of Science and Technology Plan from Beijing Educational Committee(Grant No.KM201810005013)the Tribology Science Fund of State Key Laboratory of Tribology(Grant Nos.STLEKF16A02,SKLTKF19B08)the Training Program of Rixin Talent and Outstanding Talent from Beijing University of Technology.
文摘Green manufacturing is a growing trend,and an effective layout design method for production lines can reduce resource wastage in processing.This study focuses on existing problems such as low equipment utilization,long standby time,and low logistics efficiency in a mixed-flow parallel production line.To reduce the energy consumption,a novel method considering an independent buffer configuration and idle energy consumption analysis is proposed for this production line’s layout design.A logistics intensity model and a machine tool availability model are established to investigate the influences of independent buffer area configuration on the logistics intensity and machine tool availability.To solve the coupling problem between machine tools in such production lines,a decoupling strategy for the relationship between machine tool processing rates is explored.An energy consumption model for the machine tools,based on an optimized configuration of independent buffers,is proposed.This model can effectively reduce the idle energy consumption of the machine tools while designing the workshop layout.Subsequently,considering the problems encountered in workshop production,a comprehensive optimization model for the mixed-flow production line is developed.To verify the effectiveness of the mathematical model,it is applied to an aviation cabin production line.The results indicate that it can effectively solve the layout problem of mixed-flow parallel production lines and reduce the idle energy consumption of machine tools during production.The proposed buffer configuration and layout design method can serve as a theoretical and practical reference for the layout design of mixed-flow parallel production lines.
基金the financial support from the National Natural Science Foundation of China (No. 51974099)。
文摘This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroidizing annealing(MSHFA). To this end, the present study mainly employed stereo microscopy, Optical Metallurgical Microscopy(OMM), Scanning Electron Microscopy(SEM), and Electron Backscatter Diffraction(EBSD) to characterize and analyze the workpiece at each processing stage of MSHF while performing microhardness measurement and uniaxial tensile experiment to test and analyze the mechanical properties of the workpiece. Macro-structure observation showed that the simulation results of flow lines at each stage were consistent with the experimental results. Microscopic observation showed that, after MSHF, deformation gradually became less significant along the outward radial direction of the bearing ring. After MSHFA,the microstructures of the bearing ring became uniform, whereas primary carbides did not dissolve.The mechanical properties were better in the axial direction(AD) than in the radial(RD) and circumferential directions(CD) after MSHF due to the smaller grain width. After MSHFA, the mechanical properties in the ADs and CDs were better than those in the RDs, which was due to the large cross-sectional area of carbides along the flow-line direction.
文摘This paper extends a production-inventory model with one unreliable machine to one that hasn machines in series, separated by finite buffers. It is shown how customer service levels and otherperformance measures can be calculated as a function of the availabilities of the machines and thesizes of the intermediate buffers.
基金Supported by National Key R&D Program of China(Grant No.2020YFA0713300)NSFC(Grant Nos.11771303,12171327,11911530092,11871045)。
文摘In the spirit of Morse homology initiated by Witten and Floer,we construct two∞-categories A and B.The weak one A comes out of the Morse-Smale pairs and their higher homotopies,and the strict one B concerns the chain complexes of the Morse functions.Based on the boundary structures of the compactified moduli space of gradient flow lines of Morse functions with parameters,we build up a weak∞-functor F:A→B.Higher algebraic structures behind Morse homology are revealed with the perspective of defects in topological quantum field theory.