The global existence of the heat flow for harmonic maps from noncompact manifolds is considered. When L^m norm of the gradient of initial data is small, the existence of a global solution is proved.
As has been observed by Morse [1], any generic vector field v on a compact smooth manifold X with boundary gives rise to a stratification of the boundary by compact submanifolds , where . Our main observation is that ...As has been observed by Morse [1], any generic vector field v on a compact smooth manifold X with boundary gives rise to a stratification of the boundary by compact submanifolds , where . Our main observation is that this stratification re-flects the stratified convexity/concavity of the boundary ?with respect to the ?v-flow. We study the behavior of this stratification under deformations of the vector field v. We also investigate the restrictions that the existence of a convex/concave traversing ?v-flow imposes on the topology of X. Let be the orthogonal projection of on the tangent bundle of . We link the dynamics of theon the boundary with the property of in X being convex/concave. This linkage is an instance of more general phenomenon that we call “holography of traversing fields”—a subject of a different paper to follow.展开更多
The physical-cover-oriented variational principle of nonlinear numerical manifold method (NNMM) for the analysis of plastical problems is put forward according to the displacement model and the characters of numerical...The physical-cover-oriented variational principle of nonlinear numerical manifold method (NNMM) for the analysis of plastical problems is put forward according to the displacement model and the characters of numerical manifold method (NMM). The theoretical calculating formulations and the controlling equation of NNMM are derived. As an example, the plate with a hole in the center is calculated and the results show that the solution precision and efficiency of NNMM are agreeable.展开更多
基金Supported by the National Natural Science Foundation of China (1057115610671079+1 种基金10701064)the Zijin Project of Zhejiang University
文摘The global existence of the heat flow for harmonic maps from noncompact manifolds is considered. When L^m norm of the gradient of initial data is small, the existence of a global solution is proved.
文摘As has been observed by Morse [1], any generic vector field v on a compact smooth manifold X with boundary gives rise to a stratification of the boundary by compact submanifolds , where . Our main observation is that this stratification re-flects the stratified convexity/concavity of the boundary ?with respect to the ?v-flow. We study the behavior of this stratification under deformations of the vector field v. We also investigate the restrictions that the existence of a convex/concave traversing ?v-flow imposes on the topology of X. Let be the orthogonal projection of on the tangent bundle of . We link the dynamics of theon the boundary with the property of in X being convex/concave. This linkage is an instance of more general phenomenon that we call “holography of traversing fields”—a subject of a different paper to follow.
文摘The physical-cover-oriented variational principle of nonlinear numerical manifold method (NNMM) for the analysis of plastical problems is put forward according to the displacement model and the characters of numerical manifold method (NMM). The theoretical calculating formulations and the controlling equation of NNMM are derived. As an example, the plate with a hole in the center is calculated and the results show that the solution precision and efficiency of NNMM are agreeable.