期刊文献+
共找到11,831篇文章
< 1 2 250 >
每页显示 20 50 100
The Propagation of Inertia-Gravity Waves and Their Influence on Zonal Mean Flow Part Two:Wave Breaking and Critical Levels 被引量:1
1
作者 郑兴宇 曾庆存 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第1期29-36,共8页
The gravity wave breaking is crucial to the large-scale circulation of middle atmosphere. In this paper, we follow Lindzen (1981) to draw out the parameterization of two-dimensional gravity wave breaking including ine... The gravity wave breaking is crucial to the large-scale circulation of middle atmosphere. In this paper, we follow Lindzen (1981) to draw out the parameterization of two-dimensional gravity wave breaking including inertial effect. Also we present some properties of critical levels and inertial critical levels. 展开更多
关键词 The Propagation of Inertia-Gravity Waves and Their Influence on Zonal Mean flow part Two Mean
下载PDF
Computer-added design of the flow part geometry of the centripetal turbine of combined internal combustion engine
2
作者 V.A.Lashko A.V.Passar 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第S1期45-47,共3页
关键词 Computer-added design of the flow part geometry of the centripetal turbine of combined internal combustion engine
下载PDF
Performance characteristics of the airlift pump under vertical solid-water-gas flow conditions for conveying centimetric-sized coal particles
3
作者 Parviz Enany Carsten Drebenshtedt 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期53-66,共14页
In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graini... In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles. 展开更多
关键词 Vertical velocity Non-spherical particle Submergence ratio Three-phase flow Churn flow Superficial velocity
下载PDF
Extending homogeneous fluidization flow regime of Geldart-A particles by exerting axial uniform and steady magnetic field
4
作者 Qiang Zhang Wankun Liu +1 位作者 Hengjun Gai Quanhong Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期169-177,共9页
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi... The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased. 展开更多
关键词 FLUIDIZED-BED FLUIDIZATION Geldart-A particles flow regimes EXTEND Magnetic stabilization
下载PDF
Experimental Study on Gas Flow Uniformity in a Diesel Particulate Filter Carrier
5
作者 Zhengyong Wang Jianhua Zhang +5 位作者 Guoliang Su Peixing Yang Xiantao Fan Shuzhan Bai Ke Sun Guihua Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期193-204,共12页
A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relative... A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF. 展开更多
关键词 DPF flow uniformity DTI silicon carbide carrier soot load
下载PDF
Numerical investigation on MHD Jeffery-Hamel nanofluid flow with different nanoparticles using fuzzy extension of generalized dual parametric homotopy algorithm
6
作者 LALCHAND Verma RAMAKANTA Meher 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1915-1930,共16页
This study considers an MHD Jeffery-Hamel nanofluid flow with distinct nanoparticles such as copper,Al_(2)O_(3)and SiO_(2)between two rigid non-parallel plane walls with the fuzzy extension of the generalized dual par... This study considers an MHD Jeffery-Hamel nanofluid flow with distinct nanoparticles such as copper,Al_(2)O_(3)and SiO_(2)between two rigid non-parallel plane walls with the fuzzy extension of the generalized dual parametric homotopy algorithm.The nanofluids have been formulated to enhance the thermophysical characteristics of fluids,including thermal diffusivity,conductivity,convective heat transfer coefficients and viscosity.Due to the presence of distinct nanofluids,a change in the value of volume fraction occurs that influences the velocity profiles of the flow.The short value of nanoparticles volume fraction is considered an uncertain parameter and represented in a triangular fuzzy number range among[0.0,0.1,0.2].A novel generalized dual parametric homotopy algorithm with fuzzy extension is used here to study the fuzzy velocities at various channel positions.Finally,the effectiveness of the proposed approach has been demonstrated through a comparison with the available results in the crisp case. 展开更多
关键词 fuzzy number Jeffery-Hamel(J-H)flow NANOFLUID homotopy analysis method
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
7
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
8
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 HIGH-SPEED partial flow pump orthogonal test optimal design numerical calculation
下载PDF
In Vivo Studies and Flow Cytometric Investigation on Anticancer Potential of Selenium Nanoparticles Synthesized via Aqueous Extract of Clerodendron phlomidis
9
作者 Veeramani Subha Kirubanandan Shanmugam Renganathan Sahadevan 《Proceedings of Anticancer Research》 2024年第1期71-81,共11页
Nowadays,doctors and nutritionists recommend individuals incorporate selenium-rich foods such as nuts,cereals,and mushrooms into their regular diet to maintain fitness and overall health.Selenium nanoparticles(SeNPs)e... Nowadays,doctors and nutritionists recommend individuals incorporate selenium-rich foods such as nuts,cereals,and mushrooms into their regular diet to maintain fitness and overall health.Selenium nanoparticles(SeNPs)exhibit strong chemopreventive capabilities.The anticipations for SeNPs with enhanced and tunable bioactive activities have led to a keen interest in phytofabrication.In this study,the aqueous extract of Clerodendron phlomidis plant leaves was utilized for the synthesis of SeNPs.In traditional Indian medicine,this plant extract is recognized as a significant anti-diabetic agent.The flavonoids tetrahydroxylflavone,7-hydroxyflavanone,and 6,4’-dimethyl-7-acetoxy-scutellarein present in this plant leaf extract demonstrate excellent anticancer activity.These secondary metabolites exhibit the ability to reduce sodium selenite into SeNPs.At a concentration of 13μg/mL,the synthesized SeNPs effectively inhibited the proliferation of the HepG2 cell line.The results suggest that the SeNPs possess promising anti-cancer potential against liver cancer and can be considered as a therapeutic agent for liver cancer treatment.Additionally,the cell cycle arrest induced by SeNPs was further confirmed by the fluorescence-activated cell sorting(FACS)method,indicating that SeNPs could efficiently differentiate cancer cells from normal cells.Notably,it showed a significant improvement in diethylnitrosamine(DEN)-induced Swiss Wistar rat groups.This scientific investigation highlights the high anti-cancer potential of SeNPs,positioning them as a promising therapeutic agent for liver cancer treatment. 展开更多
关键词 Selenium nanoparticles Green synthesis Liver cancer Clerodendron phlomidis flow cytometry In vivo studies
下载PDF
Analysis of particle dispersion in a turbulent flow considering particle rotation 被引量:1
10
作者 Wenshi Huang Yang Zhang +2 位作者 Yuxin Wu Jingyu Wang Minmin Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期29-39,共11页
Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of n... Non-spherical particles exist widely in natural and industrial fluid systems and the motions of nonspherical particles are significantly different from that of spherical particles.In this paper,a simplified model of non-spherical particles considering particle drag correction,lift,and rotation was established.Based on the Eulerian-Lagrangian simulation,the dispersion characteristics of spherical and nonspherical particles with different Stokes numbers in a high-speed turbulent jet were analyzed and compared considering the effect of particle rotation.The results show that,the differences in particle dispersion and radial velocity fluctuation between non-spherical particles and spherical particles in the jet are significant,especially when Stokes number is large.Moreover,the effects of different type of forces on the dispersion of non-spherical particles and spherical particles were compared in detail,which revealed that the change of the Magnus force caused by the increase in the angular velocity of non-spherical particles plays a dominant role in the differences of particle dispersion. 展开更多
关键词 DISPERSION partICLE particle-laden flows particle rotation Turbulent flow
下载PDF
Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach 被引量:2
11
作者 Lingguo Meng Shuling Gao +4 位作者 Dezhou Wei Qiang Zhao Baoyu Cui Yanbai Shen Zhenguo Song 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期251-263,共13页
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ... The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation. 展开更多
关键词 Spiral separator Computational fluid dynamics(CFD) Eulerian multi-fluid VOF model Bagnold effect particulate flow
下载PDF
Organized macro-scale membrane size reduction in vanadium redox flow batteries:Part 1.General concept 被引量:1
12
作者 Abdulmonem Fetyan Bronston P.Benetho Musbaudeen O.Bamgbopa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期64-70,I0003,共8页
The high costs of the currently used membranes in vanadium redox flow batteries(VRFBs)contribute to the price of the vanadium redox flow battery systems and therefore limit the market share of the VRFBs.Here we report... The high costs of the currently used membranes in vanadium redox flow batteries(VRFBs)contribute to the price of the vanadium redox flow battery systems and therefore limit the market share of the VRFBs.Here we report a detailed simulation and experimental studies on the effect of membrane reduction of single-cell VRFB.Different simulated designs demonstrate that a proposed centred and double-strip membrane coverage showed a promising performance.Experimental charge-discharge profile of different membrane size reduction,which showed good agreement with simulated data,suggests that the membrane size can comfortably be reduced by up to 20%without severe efficiency or discharge capacity loss.Long-term cycling of 80%centred membrane coverage showed improved capacity retention during the latter cycles with almost 1%difference in capacity and only 2%in energy efficiency when compared to the fully covered-membrane cell.The results hold great promise for the development of cheap RFB stacks and facilitate the way to develop new cell designs with non-overlapping electrodes geometry.Therefore,giving more flexibility to improve the overall performance of the system. 展开更多
关键词 Membrane reduction Electrodes overlapping Cell-Architecture Multiphysics simulation Redox flow Batteries
下载PDF
Influence of Thermophoresis and Brownian Motion of Nanoparticles on Radiative Chemically-Reacting MHD Hiemenz Flow over a Nonlinear Stretching Sheet with Heat Generation 被引量:1
13
作者 S.Mohammed Ibrahim P.Vijaya Kumar G.Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2023年第4期855-868,共14页
In this study,a radiative MHD stagnation point flow over a nonlinear stretching sheet incorporating thermophoresis and Brownian motion is considered.Using a similarity method to reshape the underlying Partial differen... In this study,a radiative MHD stagnation point flow over a nonlinear stretching sheet incorporating thermophoresis and Brownian motion is considered.Using a similarity method to reshape the underlying Partial differential equations into a set of ordinary differential equations(ODEs),the implications of heat generation,and chemical reaction on the flow field are described in detail.Moreover a Homotopy analysis method(HAM)is used to interpret the related mechanisms.It is found that an increase in the magnetic and velocity exponent parameters can damp the fluid velocity,while thermophoresis and Brownian motion promote specific thermal effects.The results also demonstrate that as the Brownian motion parameter is increased,the concentration values become smaller. 展开更多
关键词 Hiemenz flow MHD thermal radiation nonlinear stretching chemical reaction HAM
下载PDF
袋型阻尼密封动力学特性双控制体Bulk Flow模型
14
作者 桂佳强 李志刚 李军 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期26-38,共13页
为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论... 为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论,将袋型密封腔室划分为两个控制体,推导了控制体的连续性、周向动量和能量方程,引入Swamee-Jain和Takahashi方程,计算流体-壁面间和流体-流体间的周向黏性摩擦力;其次,采用牛顿-拉夫森算法和摄动分析法分别求解0阶和1阶控制方程,获得各刚度、阻尼动力特性系数;然后,通过与袋型阻尼密封泄漏量和动力特性系数的实验值、单控制体Bulk Flow模型和非定常计算流体动力学(CFD)数值结果进行比较,验证了模型和方法的准确性和可靠性;最后,研究了转子转速(10 000、15 000、20 000 r/min)和预旋比(0.067、0.724、0.997)对袋型阻尼密封动力学特性的影响。结果表明:所发展的模型和方法具有计算速度快、预测精度高(泄漏量预测误差小于6%,动力特性系数预测误差小于38%)的优点;转子转速和进口预旋的增大均会导致袋型阻尼密封有效阻尼显著减小,穿越频率显著增大,易诱发轴系失稳。 展开更多
关键词 袋型阻尼密封 泄漏特性 动力学特性 双控制体 Bulk flow模型
下载PDF
肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性研究
15
作者 胡勤勤 姜阳 +3 位作者 张玉龙 方玉 梁仁容 杨华 《中国中医急症》 2024年第6期982-985,989,共5页
目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬... 目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬化患者分布情况,观察门静脉系统(门静脉主干、脾静脉、肠系膜上静脉)的血流动力学参数,包括血流量、流速、壁剪切力等,比较不同证型患者门静脉血流动力学参数差异。结果肝硬化代偿期以肝气郁结证、湿热蕴结证为主,肝硬化失代偿期以脾肾阳虚、瘀血络阻证为主;A级以肝气郁结证、湿热蕴结证为主,B、C级以瘀血络阻证为主。瘀血络阻证肝硬化患者门静脉主干及脾静脉血流量明显高于肝气郁结证、湿热蕴结证患者(P<0.05);脾肾阳虚证门静脉主干血流量明显高于肝气郁结证肝硬化患者(P<0.05);瘀血络阻证肝硬化患者门静脉主干流速及剪切力较肝气郁结证和湿热蕴结证低。结论肝硬化患者中医辨证分型与门静脉血流动力学参数具有一定相关性,4D flow MRI可为肝硬化的中医辨证提供血流动力学参考。 展开更多
关键词 肝硬化 4D flow MRI 血流动力学 中医证型
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:1
16
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Evaluating the stability and volumetric flowback rate of proppant packs in hydraulic fractures using the lattice Boltzmann-discrete element coupling method 被引量:1
17
作者 Duo Wang Sanbai Li +2 位作者 Rui Wang Binhui Li Zhejun Pan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2052-2063,共12页
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a... The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations. 展开更多
关键词 Numerical simulation Hydraulic fracturing Proppant flowback Closure stress particulate flow
下载PDF
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
18
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
下载PDF
基于FLOW3D的集成式水下基盘泥沙冲淤三维数值模拟
19
作者 薛强 高博远 +3 位作者 段辰宇 张子涵 陈同庆 张庆河 《水道港口》 2024年第3期333-338,414,共7页
泥面下集成式水下基盘是为开采渤海通航区等海域油气资源而提出的新型基盘,其基坑周围局部冲淤是工程实践关注的问题之一。基于不可压缩粘性流体运动的Navier-Stokes方程建立泥面下集成式水下基盘基坑周围三维水动力数学模型,对不同粒... 泥面下集成式水下基盘是为开采渤海通航区等海域油气资源而提出的新型基盘,其基坑周围局部冲淤是工程实践关注的问题之一。基于不可压缩粘性流体运动的Navier-Stokes方程建立泥面下集成式水下基盘基坑周围三维水动力数学模型,对不同粒径和不同流速情况下的局部冲淤进行了模拟。结果表明:泥沙粒径为0.005 mm时,由于泥沙较难起动,基坑附近局部冲淤较小。粒径分别为0.05 mm和0.1 mm时,在典型流速作用下,基盘附近可分别形成1 m左右和4 m左右的淤积。 展开更多
关键词 水下基盘 数值模拟 局部冲淤 三维水动力 冲刷 flow3D
下载PDF
Experiments on two-phase flow in hydraulic jump on pebbled rough bed:Part 1–Turbulence properties and particle chord time and length
20
作者 Farhad Bahmanpouri Carlo Gualtieri Hubert Chanson 《Water Science and Engineering》 EI CAS CSCD 2023年第4期359-368,共10页
This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ... This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering. 展开更多
关键词 Hydraulic jump Pebbled rough bed Turbulence intensity particle chord time Two-phase flow
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部