A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozz...A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Machnumbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of3.0<Ma<4.0, was shown to illustrate the present design technique. To fully validate the present design method, computational fluid dynamics(CFD) analyses were carried out to study the flow quality in the test area of the nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.展开更多
The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was d...The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was developed. By means of the conservation law, a proposed differential equation for the change of sediment pollutants was linked to the 2-D equations. Under the framework of the finite volume method, the Osher approximate Riemann solver was employed to solve the equations. An analytical resolution was used to examine the model capabilities. Simulated results matched the exact solutions especially well. As an example, the simulation of CODMn in the Wuli Lake, a part of the Taihu lake, was conducted, which led to reasonable results. This study provides a new approach and a practical tool for the simulation of flow and water quality in shallow lakes.展开更多
A real-time mathematical model for two dimensional tidal flow and water quality is presented in this paper. The control-volume-based-finite-difference method and the 'power interpolation distribution' advocate...A real-time mathematical model for two dimensional tidal flow and water quality is presented in this paper. The control-volume-based-finite-difference method and the 'power interpolation distribution' advocated by Patankar [4] have been employed, and new boundary condition for tidal flow is recommended. The model is un- conditionally stable and convergent, and able to deal with irregular estuarine topography and movable boundary problems. Practical application of the model is illustrated by an example for the Swatou Bay. A fair agreement be- tween the values measured and computed demonstrates the validity of the model developed.展开更多
Shijiuyang Constructed Wetland(110 hm^2) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water ...Shijiuyang Constructed Wetland(110 hm^2) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond–wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited.展开更多
基金Project(11072264)supported by the National Natural Science Foundation of China
文摘A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Machnumbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of3.0<Ma<4.0, was shown to illustrate the present design technique. To fully validate the present design method, computational fluid dynamics(CFD) analyses were carried out to study the flow quality in the test area of the nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.
基金the National Natural Science Foundation of China (Grant No. 50239093)Nanjing Construction Commission (Grant No. 20050176).
文摘The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was developed. By means of the conservation law, a proposed differential equation for the change of sediment pollutants was linked to the 2-D equations. Under the framework of the finite volume method, the Osher approximate Riemann solver was employed to solve the equations. An analytical resolution was used to examine the model capabilities. Simulated results matched the exact solutions especially well. As an example, the simulation of CODMn in the Wuli Lake, a part of the Taihu lake, was conducted, which led to reasonable results. This study provides a new approach and a practical tool for the simulation of flow and water quality in shallow lakes.
文摘A real-time mathematical model for two dimensional tidal flow and water quality is presented in this paper. The control-volume-based-finite-difference method and the 'power interpolation distribution' advocated by Patankar [4] have been employed, and new boundary condition for tidal flow is recommended. The model is un- conditionally stable and convergent, and able to deal with irregular estuarine topography and movable boundary problems. Practical application of the model is illustrated by an example for the Swatou Bay. A fair agreement be- tween the values measured and computed demonstrates the validity of the model developed.
基金upported by the National Natural Science Foundation of China (No. 51278487)the Major National Water Pollution Control and Management Project of China (Nos. 2012ZX07403-003-03, 2008ZX07421-001)+1 种基金the National Basic Research Program (973) of China (No. 2009CB421103)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-EW-410-05)
文摘Shijiuyang Constructed Wetland(110 hm^2) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond–wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited.