China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable prod...China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.展开更多
The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes o...The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.展开更多
This paper presents the hydrodynamics of the wet scrubber coupled to a pilot CFB incineration facility. The scrubber was operated using tap water as a scrubbing liquid. The outlet liquid flow rate, Qo, and accumulatio...This paper presents the hydrodynamics of the wet scrubber coupled to a pilot CFB incineration facility. The scrubber was operated using tap water as a scrubbing liquid. The outlet liquid flow rate, Qo, and accumulation rate, Qa, strongly depend on the inlet liquid flow rate, Qin, with different profiles. At higher Qin values, Qo stabilizes, leading to higher Qa and finally flooding. The values of Qa were higher than Qo except for Qin ranging between 0.53 and 0.72 L/s (safe operating range) in which Qa ≌ Qo and Qa = Qin/2. The outlet-to-inlet liquid flow rate ratio, Qo/Qin decreased for Qin > 0.53 L/s. The increase in the accumulation-to-inlet liquid flow rate ratio, Qa/Qin, at higher Qin indicates a change in flow regime towards flooding, accompanied by an abrupt increase in the height of accumulating liquid, Ha. The difference between Qa/Qin and Qo/Qin (denoted as, ΔQao/Qin), shows a minimum close to zero in the safe operating range. The gas flow rate towards the wet scrubber had slight effect on Qo and Qa when Qin was maintained constant. The ratio Qo/Qin decreased slightly with Ha/Ht irrespective of gas velocity. Changing the liquid-to-gas ratio, L/G and Qin strongly affects the maximum and minimum values of Qo/Qin and Qa/Qin.展开更多
基金the Fundamental Research Funds for the Central Universities of China(No.20CX02308A)CNOOC Project(No.ZX2022ZCCYF3835).
文摘China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.
基金The authors like to express appreciation to the support given by the major national science and technology special project:Research and Application of Key Technologies for Oil Production and Gas Recovery in Complex Carbonate Reservoirs in Central Asia and Middle East(2017ZX05030-005)Scientific Research Startup Fund Project for Introducing Talent of Kunming University of Science and Technology(KKSY20180502).
文摘The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.
文摘This paper presents the hydrodynamics of the wet scrubber coupled to a pilot CFB incineration facility. The scrubber was operated using tap water as a scrubbing liquid. The outlet liquid flow rate, Qo, and accumulation rate, Qa, strongly depend on the inlet liquid flow rate, Qin, with different profiles. At higher Qin values, Qo stabilizes, leading to higher Qa and finally flooding. The values of Qa were higher than Qo except for Qin ranging between 0.53 and 0.72 L/s (safe operating range) in which Qa ≌ Qo and Qa = Qin/2. The outlet-to-inlet liquid flow rate ratio, Qo/Qin decreased for Qin > 0.53 L/s. The increase in the accumulation-to-inlet liquid flow rate ratio, Qa/Qin, at higher Qin indicates a change in flow regime towards flooding, accompanied by an abrupt increase in the height of accumulating liquid, Ha. The difference between Qa/Qin and Qo/Qin (denoted as, ΔQao/Qin), shows a minimum close to zero in the safe operating range. The gas flow rate towards the wet scrubber had slight effect on Qo and Qa when Qin was maintained constant. The ratio Qo/Qin decreased slightly with Ha/Ht irrespective of gas velocity. Changing the liquid-to-gas ratio, L/G and Qin strongly affects the maximum and minimum values of Qo/Qin and Qa/Qin.