Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains l...Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains limited Accordingly, we measured sap flow velocity of Populus euphratica using the heat ratio method between 2012 and2014. Nocturnal stem sap flow was separated into nighttime and stem refilling using the ‘‘forecasted refilling''method. Nighttime transpiration was observed for each phenophase. The highest value was during the full foliation period but lowest during leaf expansion and defoliation periods. The contribution of nighttime transpiration to daytime transpiration was an average of 15% but this was comparatively higher during the defoliation period. Relationships between nighttime transpiration, vapor pressure deficits, and air temperatures were more closely associated than with wind speed in all phenophases. Moreover, we found that nighttime transpiration linearly correlated to vapour pressure deficit during the first and the full foliation periods, but nighttime transpiration showed exponential correlations to air temperatures during the same phenophases. Additionally, environmental drivers of transpiration were significantly different between nighttime and daytime(P \ 0.05). Driving forces behind nighttime transpiration were characterized by many factors, and integrated impacts between these multiple environmental factors were complex. Future studies should focus on these integrated impacts on nighttime transpiration, and the physiological mechanisms of nighttime transpiration should be investigated, given that this could also influence its occurrence and magnitude during different phenophases.展开更多
基金financially supported by the Key Research Program of Frontier Sciences CAS(QYZDJ-SSWDQC031)Key Project of the Chinese Academy of Sciences(KZZDEW-04-05)+1 种基金the National Natural Science Foundation of China(91025024)the ‘‘Western Light’’ project of the Chinese Academy of Science
文摘Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains limited Accordingly, we measured sap flow velocity of Populus euphratica using the heat ratio method between 2012 and2014. Nocturnal stem sap flow was separated into nighttime and stem refilling using the ‘‘forecasted refilling''method. Nighttime transpiration was observed for each phenophase. The highest value was during the full foliation period but lowest during leaf expansion and defoliation periods. The contribution of nighttime transpiration to daytime transpiration was an average of 15% but this was comparatively higher during the defoliation period. Relationships between nighttime transpiration, vapor pressure deficits, and air temperatures were more closely associated than with wind speed in all phenophases. Moreover, we found that nighttime transpiration linearly correlated to vapour pressure deficit during the first and the full foliation periods, but nighttime transpiration showed exponential correlations to air temperatures during the same phenophases. Additionally, environmental drivers of transpiration were significantly different between nighttime and daytime(P \ 0.05). Driving forces behind nighttime transpiration were characterized by many factors, and integrated impacts between these multiple environmental factors were complex. Future studies should focus on these integrated impacts on nighttime transpiration, and the physiological mechanisms of nighttime transpiration should be investigated, given that this could also influence its occurrence and magnitude during different phenophases.