期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations 被引量:2
1
作者 Ling Li Ming-Shun Yuan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期200-207,共8页
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack’s scheme on... In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack’s scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects. 展开更多
关键词 Wall turbulences · Large eddy simulation · Drag reduction · Hydrophobic wall · Weakly compressible flow
下载PDF
Bionic Design and Finite Element Analysis of Elbow in Ice Transportation Cooling System 被引量:3
2
作者 Dejun Miao~(1,2), Xiuhua Sui~3, Linjing Xiao~3 1. Key Laboratory of Mine Hazard Prevention and Control (Ministry of Education, China), Shandong University of Science and Technology, Qingdao 266510, P. R. China 2. School of Architecture, Tsinghua University, Beijing 100084, P. R. China 3. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期301-306,共6页
With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical pr... With the increase in mining depth, mine heat harm has appeared to be more prominent. The mine heat harm could be resolvedor reduced by ice refrigeration. Thus, ice transportation through pipeline becomes a critical problem; typically flowresistance occurs in the elbow. In the present study, according to the analysis of the surface morphology of fish scale, abiomimetic functional surface structure for the interior wall of elbow is designed. Based on the theory of liquid-solid two phaseflow, a CFD numerical simulation of ice-water mixture flowing through the elbow is carried out using finite element method.Conventional experiments of pressure drop and flow resistance for both bionic and common elbows are conducted to test theeffect of the bionic elbow on flow resistance reduction. It is found that with the increase in the ice mass fraction in the ice-watermixture, the effect of bionic elbow on resistance reduction becomes more obvious. 展开更多
关键词 bionic elbow two phase flow ice transportation flow resistance reduction pressure loss
下载PDF
Tip-leakage flow loss reduction in a two-stage turbine using axisymmetric-casing contouring 被引量:9
3
作者 Wei Zuojun Qiao Weiyang +2 位作者 Shi Peijie Chen Pingping Zhao Lei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1111-1121,共11页
In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuse... In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuses on the effects of contoured axisymmetric-casing on the blade tipleakage flow. While the size of tip clearance remains the same as the original design, the rotor casing and the blade tip are obtained with the same contoured arc shape. Numerical calculation results show that a promotion of 0.14% to the overall efficiency is achieved. Detailed analysis indicates that it reduces the entropy generation rate caused by the complex vortex structure in the rotor tip region, especially in the tip-leakage vortex. The low velocity region in the leading edge(LE) part of the tip gap is enlarged and the pressure side/tip junction separation bubble extends much further away from the leading edge in the clearance. So the blocking effect of pressure side/tip junction separation bubble on clearance flow prevents more flow on the tip pressure side from leaking to the suction side, which results in weaker leakage vortex and less associated losses. 展开更多
关键词 Axisymmetric-casing contouring Leakage Leakage flow Loss reduction Tip clearance Turbines
原文传递
Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets 被引量:8
4
作者 Shao-Qiong Yang Shan Li +2 位作者 Hai-Ping Tian Qing-Yi Wang Nan Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期284-294,共11页
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-insp... Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag. 展开更多
关键词 Turbulent boundary layer(TBL) Coherent vortex structure flow control Drag reduction Shark-skininspired riblet Tomographic particle image velocimetry(TPIV)
下载PDF
THE NUMERICAL SIMULATION OF FLOW IN ALUMINUM REDUCTION CELLS 被引量:1
5
作者 Zhuang Ye-gao Zhang Qi-de, Department of Mechanics, Huazhong University of Scieuce and Technology, Wuhan 430074, P. R. China 《Journal of Hydrodynamics》 SCIE EI CSCD 1991年第1期11-15,共5页
The electromagnetic force causes a circulation of both cryolite and the metal in the aluminum reduction cells. This motion has the effect of reducing the current efficiency of the cell, and increases the distance betw... The electromagnetic force causes a circulation of both cryolite and the metal in the aluminum reduction cells. This motion has the effect of reducing the current efficiency of the cell, and increases the distance between the an- ode and the cathode. Using the time-averaged Navier-Stokes equations and the K-e model of turbulence this paper numerically calculated the distributions of velocities, pressure, turbulent kinetic energy in the cells and deforma- tion of the interface of cryolite and metal. These results may be used to control the process of production and to improve the design of the cells. 展开更多
关键词 PR flow THE NUMERICAL SIMULATION OF flow IN ALUMINUM reduction CELLS
原文传递
Study on Chemiluminescence Reaction between Lucigenin and Four Rare Metal Ions
6
作者 朱智甲 赵建玲 《Rare Metals》 SCIE EI CAS CSCD 2000年第2期152-156,147,共5页
The chemiluminescence (CL) reactions between lucigenin and four rare metal reductants were studied systematically using a flow injection system.The results show that the reactions can be used for determination of rare... The chemiluminescence (CL) reactions between lucigenin and four rare metal reductants were studied systematically using a flow injection system.The results show that the reactions can be used for determination of rare metals.The probable mechanism of the CL reactions involves the reduction of dissolved oxygen to the superoxide radical O - 2·by the reductant,followed by the O - 2·reacting with alkaline Lu to generate CL.The pathway involves a dioxetane intermediate. 展开更多
关键词 Rare metal reductant Lucigenin Chemiluminescence flow injection analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部