In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteris...In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.展开更多
This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping rela...This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.展开更多
Based on crystal plasticity theory and surface layer model, relation of flow stress to billet dimension and grain size was built, and rationality of derived relation was verified with tensile tests of different size b...Based on crystal plasticity theory and surface layer model, relation of flow stress to billet dimension and grain size was built, and rationality of derived relation was verified with tensile tests of different size billets. With derived expressions, relation of decreasing flow stress scale effect to billet dimension, grain size as well as billet shape was discussed and predicted. The results show that flow stress is proportional to billet size; with decrease of grain size, flow stress is less influenced by billet dimension. When both cross section area and grain size are same, flow stress decrease of rectangular section billet or sheet is larger than that of circular section billet.展开更多
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and nume...Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.展开更多
The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for the short-range eddy stress were given. A concept of resonant-range interactions between extreme...The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for the short-range eddy stress were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress were also derived. Multi-scale equations for the incompressible turbulent flows were proposed. Key words turbulence - incompressible flow - interactions between scales - multi-scale equations MSC 2000 76F70展开更多
In order to research start-up pressure wave propagation mechanism and determine pressure wave speed in gelled crude oil pipelines accurately,experiment of Large-scale flow loop was carried out.In the experiment,start-...In order to research start-up pressure wave propagation mechanism and determine pressure wave speed in gelled crude oil pipelines accurately,experiment of Large-scale flow loop was carried out.In the experiment,start-up pressure wave speeds under various operation conditions were measured,and effects of correlative factors on pressure wave were analyzed.The experimental and theoretical analysis shows that thermal shrinkage and structural properties of gelled crude oils are key factors influencing on start-up pressure wave propagation.The quantitative analysis for these effects can be done by using volume expansion coefficient and structural property parameter of gelled crude oil.A new calculation model of pressure wave speed was developed on the basis of Large-scale flow loop experiment and theoretical analysis.展开更多
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter...The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.展开更多
High-pressure(HP)veins were extensively developed in western Tianshan high-pressure(HP)metamorphic belt.The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids.Anal...High-pressure(HP)veins were extensively developed in western Tianshan high-pressure(HP)metamorphic belt.The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids.Analytical data show that the immediately adjacent host-rocks of the studied HP vein are eclogites and gradually turned into blueschist as the distance from the veins increases,which indicates that the vein-forming fluid was derived from adjacent host-rocks;the boundaries between the vein and the host-rocks are sharp,which indicates that the fracture of the host-rocks is brittle during the vein-forming process.It is suggested that this type of HP veins is precipitated from the liquid formed by the dehydration of the host-rocks during the prograde metamorphism from blueschist to eclogite facies,which results in hydrofracturing of the rocks and provides the space for the vein to precipitate.The width of the eclogite-facies host-rocks is usually 1-2 cm,which provides the direct evidence that the fluid flow is on centimeter-scale.展开更多
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale flu...A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions.展开更多
The short-range property of interactions between scales in the compressible turbulent flow was examined. An estimation of the short-range scale scope and some formulae for the short-range eddy stress and heat transfe...The short-range property of interactions between scales in the compressible turbulent flow was examined. An estimation of the short-range scale scope and some formulae for the short-range eddy stress and heat transfer etc. were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress and heat transfer etc. were also given. Multi-scale equations for the compressible turbulent flows were presented. The multi-scale equations are approximately closed and do not contain any empirical constants. The compressibility effects on turbulence are determined by the Farve averaged variables and the nonlinear relationships between the Farve- and physical-averaged variables.展开更多
The governing equations for large eddy simulation (LES) are obtained by filtering the Navier-Stokes (N-S) equations with standard (non-Favre filtering) spatial filter function. The filtered scale stress due to t...The governing equations for large eddy simulation (LES) are obtained by filtering the Navier-Stokes (N-S) equations with standard (non-Favre filtering) spatial filter function. The filtered scale stress due to the standard filtering is then reconstructed by using the Taylor series expansion. The loss of information due to truncating the expansion up to the first derivative term is modeled by a dynamic nonlinear model (DNM), which is free from any empirical constant and wall damping function. The DNM avoids the singularity of the model and shows good local stability. Unlike the conventional dynamic Smagorinsky model (DSM), the DNM does not require the plane averaging and reduces the computational cost. The turbulent flow over a double ellipsoid for Reynolds number of 4.25 × 10^6 and Mach number of 8.02 is simulated numerically to validate the proposed approach. The results are compared with experiment data, as well as the data of Reynolds averaged numerical simulation (RANS).展开更多
Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagran...Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagrangian integral time scales and time microscales were compared to their Eulerian equivalents. It is found that the ratio of Lagrangian to TL Eulerian integral time scales is given by TE/TiE= 1 + 0.1y+ for y+ ≤ 10, and that the ratios between the Lagrangian to theEulerian time microscales are almost the same irrespective of the components. Those increase with y+ are approximated by ≈ 2.75 - 1.75 exp (-v+/a) . These results also show that these expressions are independent of the Reynolds number.展开更多
Understanding how the transpiration of this vegetation type responds to environmental stress is important for determining the wa-ter-balance dynamics of the riparian ecosystem threatened by groundwater depletion. Tran...Understanding how the transpiration of this vegetation type responds to environmental stress is important for determining the wa-ter-balance dynamics of the riparian ecosystem threatened by groundwater depletion. Transpiration and sap flow were measured using the heat-pulse technique. The results were then projected up to the stand level to investigate the stand’s water-use in relation to climate forcing in the desert riparian forest in an extreme arid region. This study took place from April through October 2003 and from May through October 2004. The experimental site was selected in the Populus euphratica Forest Reserve (101o10' E, 41o59' N) in Ejina county, in the lower Heihe River basin, China. The sapwood area was used as a scalar to extrapolate the stand-water consumption from the whole trees’ water consumption measured by the heat-pulse velocity recorder (HPVR). Scale transferring from a series of individual trees to a stand was done according to the existing natural variations between trees under given environmental conditions. The application of the biometric parameters available from individual tree and stand levels was proved suitable for this purpose. A significant correlation between the sapwood area and tree diameter at breast height (DBH) was found. The prediction model is well fitted by the power model. On the basis of the prediction model, the sapwood area can be cal-culated by DBH. The sap-flow density can then be used to extrapolate the stand-water use by means of a series of mathematical models.展开更多
A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on pianeta ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container...A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on pianeta ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves de creases and phase shifts downstream. In the case of the earth's atmosphere, although magnitude of variation in earth's rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number determining regimes in planetary-scale geophysical flows. 1 he observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with the variation in earth's rotation rate. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.展开更多
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ...We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.展开更多
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical si...In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.展开更多
A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to...A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.展开更多
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid con...Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.展开更多
基金supported by the National High-Tec Research and Development Program of China(2006AA09A104)
文摘In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.
基金supported by the National Basic Research Program of China (973) (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant No 70671008)
文摘This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.
文摘Based on crystal plasticity theory and surface layer model, relation of flow stress to billet dimension and grain size was built, and rationality of derived relation was verified with tensile tests of different size billets. With derived expressions, relation of decreasing flow stress scale effect to billet dimension, grain size as well as billet shape was discussed and predicted. The results show that flow stress is proportional to billet size; with decrease of grain size, flow stress is less influenced by billet dimension. When both cross section area and grain size are same, flow stress decrease of rectangular section billet or sheet is larger than that of circular section billet.
基金supported by the National Basic Research Program of China(2005CB221307 & 2005CB221304)China Postdoctoral Science Foundation(20090460391 & 201003138)PetroChina RIPED Innovations Foundation.
文摘Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.
文摘The short-range property of interactions between scales in incompressible turbulent flow was examined. Some formulae for the short-range eddy stress were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress were also derived. Multi-scale equations for the incompressible turbulent flows were proposed. Key words turbulence - incompressible flow - interactions between scales - multi-scale equations MSC 2000 76F70
基金Project(2008B-2901) supported by China National Petroleum Corporation
文摘In order to research start-up pressure wave propagation mechanism and determine pressure wave speed in gelled crude oil pipelines accurately,experiment of Large-scale flow loop was carried out.In the experiment,start-up pressure wave speeds under various operation conditions were measured,and effects of correlative factors on pressure wave were analyzed.The experimental and theoretical analysis shows that thermal shrinkage and structural properties of gelled crude oils are key factors influencing on start-up pressure wave propagation.The quantitative analysis for these effects can be done by using volume expansion coefficient and structural property parameter of gelled crude oil.A new calculation model of pressure wave speed was developed on the basis of Large-scale flow loop experiment and theoretical analysis.
基金The project supported by the National Natural Science Foundation of China (50176022)
文摘The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
基金Project(2001CB409803)supported by the Major State Basic Research Development Program of China
文摘High-pressure(HP)veins were extensively developed in western Tianshan high-pressure(HP)metamorphic belt.The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids.Analytical data show that the immediately adjacent host-rocks of the studied HP vein are eclogites and gradually turned into blueschist as the distance from the veins increases,which indicates that the vein-forming fluid was derived from adjacent host-rocks;the boundaries between the vein and the host-rocks are sharp,which indicates that the fracture of the host-rocks is brittle during the vein-forming process.It is suggested that this type of HP veins is precipitated from the liquid formed by the dehydration of the host-rocks during the prograde metamorphism from blueschist to eclogite facies,which results in hydrofracturing of the rocks and provides the space for the vein to precipitate.The width of the eclogite-facies host-rocks is usually 1-2 cm,which provides the direct evidence that the fluid flow is on centimeter-scale.
基金The project supported by the Special Funds for Major State Basic Research,China(G-1999-0222-08)the Postdoctoral Science Foundation(2004036239)
文摘A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions.
文摘The short-range property of interactions between scales in the compressible turbulent flow was examined. An estimation of the short-range scale scope and some formulae for the short-range eddy stress and heat transfer etc. were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress and heat transfer etc. were also given. Multi-scale equations for the compressible turbulent flows were presented. The multi-scale equations are approximately closed and do not contain any empirical constants. The compressibility effects on turbulence are determined by the Farve averaged variables and the nonlinear relationships between the Farve- and physical-averaged variables.
文摘The governing equations for large eddy simulation (LES) are obtained by filtering the Navier-Stokes (N-S) equations with standard (non-Favre filtering) spatial filter function. The filtered scale stress due to the standard filtering is then reconstructed by using the Taylor series expansion. The loss of information due to truncating the expansion up to the first derivative term is modeled by a dynamic nonlinear model (DNM), which is free from any empirical constant and wall damping function. The DNM avoids the singularity of the model and shows good local stability. Unlike the conventional dynamic Smagorinsky model (DSM), the DNM does not require the plane averaging and reduces the computational cost. The turbulent flow over a double ellipsoid for Reynolds number of 4.25 × 10^6 and Mach number of 8.02 is simulated numerically to validate the proposed approach. The results are compared with experiment data, as well as the data of Reynolds averaged numerical simulation (RANS).
基金supported by the National Natural Science Foundation of China (Grant No.10742005)the Science Fundation for Young Teachers of Shanghai Institute of Technology (Grant No.YJ2007-26)the Shanghai Pujiang Program (Grant Nos.08PJ1409100,06PJ14041)
文摘Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagrangian integral time scales and time microscales were compared to their Eulerian equivalents. It is found that the ratio of Lagrangian to TL Eulerian integral time scales is given by TE/TiE= 1 + 0.1y+ for y+ ≤ 10, and that the ratios between the Lagrangian to theEulerian time microscales are almost the same irrespective of the components. Those increase with y+ are approximated by ≈ 2.75 - 1.75 exp (-v+/a) . These results also show that these expressions are independent of the Reynolds number.
基金supported by the National Natural Science Foundation of China (40725001 40501012)+1 种基金drought mete-orological scientific research fund projects (IAM200707)the Knowledge Innovation Program from the Chinese Academy of Sciences (KZCX2-XB2-04)
文摘Understanding how the transpiration of this vegetation type responds to environmental stress is important for determining the wa-ter-balance dynamics of the riparian ecosystem threatened by groundwater depletion. Transpiration and sap flow were measured using the heat-pulse technique. The results were then projected up to the stand level to investigate the stand’s water-use in relation to climate forcing in the desert riparian forest in an extreme arid region. This study took place from April through October 2003 and from May through October 2004. The experimental site was selected in the Populus euphratica Forest Reserve (101o10' E, 41o59' N) in Ejina county, in the lower Heihe River basin, China. The sapwood area was used as a scalar to extrapolate the stand-water consumption from the whole trees’ water consumption measured by the heat-pulse velocity recorder (HPVR). Scale transferring from a series of individual trees to a stand was done according to the existing natural variations between trees under given environmental conditions. The application of the biometric parameters available from individual tree and stand levels was proved suitable for this purpose. A significant correlation between the sapwood area and tree diameter at breast height (DBH) was found. The prediction model is well fitted by the power model. On the basis of the prediction model, the sapwood area can be cal-culated by DBH. The sap-flow density can then be used to extrapolate the stand-water use by means of a series of mathematical models.
文摘A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on pianeta ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves de creases and phase shifts downstream. In the case of the earth's atmosphere, although magnitude of variation in earth's rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number determining regimes in planetary-scale geophysical flows. 1 he observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with the variation in earth's rotation rate. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174109 and 61104148)the National Science and Technology Major Project of China(Grant No.2011ZX05020-006)the Zhejiang Key Discipline of Instrument Science and Technology,China(Grant No.JL130106)
文摘We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.
基金supported by the National Natural Science Foundation of China(10472053 and 10772098)
文摘In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.
基金supported by the National Natural Science Foundation of China(Grant No. 40233032)Ministry of Science and Tech-nology (Grant No. 2006BAB18B03 and Grant No.2006BAB18B05)Office of Naval Research (Grant No.N0001409WR20177)
文摘A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.
基金Supported by the National High Technology Research and Development Program of China(2011AA05A205)the National Natural Science Foundation of China(U1162125,U1361112)
文摘Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.