The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes o...Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions.That will lead to low NO_χconversion efficiency or NH_3 slip.In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions,an advanced control strategy based on an air-assisted volumetric UDS is presented.It covers the methods of flow compensation and switching working conditions.The strategy is authenticated on an UDS and tested in different dynamic conditions.The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS.The inject deviation range is improved from being between-8%and 10%to-4%and 2%and became more stable than before,and the dynamic response time was shortened from 200 ms to 150 ms.The ETC cycle result shows that after using the new strategy the NH_3 emission is reduced by 60%,and the NO_χemission remains almost unchanged.The trade-off between NO_χconversion efficiency and NH_3 slip is mitigated.The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.展开更多
A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulen...A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the(highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction(with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-ε models. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as illustrated by the Q-criterion.展开更多
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA111708)
文摘Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions.That will lead to low NO_χconversion efficiency or NH_3 slip.In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions,an advanced control strategy based on an air-assisted volumetric UDS is presented.It covers the methods of flow compensation and switching working conditions.The strategy is authenticated on an UDS and tested in different dynamic conditions.The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS.The inject deviation range is improved from being between-8%and 10%to-4%and 2%and became more stable than before,and the dynamic response time was shortened from 200 ms to 150 ms.The ETC cycle result shows that after using the new strategy the NH_3 emission is reduced by 60%,and the NO_χemission remains almost unchanged.The trade-off between NO_χconversion efficiency and NH_3 slip is mitigated.The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.
基金Supported by the Ministry of Education Malaysia through RACE(RDU121308)and FRGS(RDU130136)
文摘A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the(highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction(with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-ε models. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as illustrated by the Q-criterion.