Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the in...Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions.展开更多
Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow D...Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow Darcy's law,also known as pre-Darcy flow.The formation of immovable water due to water adsorption on the pore wall is believed to be responsible for the formation of pre-Darcy flow.However,this view lacks direct solid evidence.To investigate the pre-Darcy water flow in clay,head permeability experiments are conducted on six clay samples with different densities.The results indicate that water seepage in clay at low hydraulic gradients does not follow Darcy's law.A clear nonlinear relationship between flow velocity and hydraulic gradient is observed.Water flow in clay can be divided into the pre-Darcy flow and Darcy flow regions by the critical hydraulic gradient,which is 10-12 for the Albic soil with dry density between 1.3 g/cm^(3)and 1.8 g/cm^(3).According to the disjoining pressure theory,immovable water due to water adsorption on the pore wall is the primary reason for water flow deviating from Darcy's law in clay.The results indicate that the percentage of movable water ranges from 39.7%to 59.3%for the six samples at a hydraulic gradient of 1.As the hydraulic gradient increases,the percentage of moveable water also increases.Additionally,there is a strong correlation between the percentage of movable water and the variation in hydraulic conductivity with the hydraulic gradient.Furthermore,a quantitative relationship between the percentage of movable water and the hydraulic conductivity has been established.The results of this study suggest that water adsorption on the pore wall not only affects the water movability,but is also closely related to the pre-Darcy flow phenomenon in clay.展开更多
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i...Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.展开更多
In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this e...In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage.展开更多
A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The resul...A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved.展开更多
Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at th...Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at three different flow rates were obtained. To determine the pore-parameter of the porous media, the internal structure of the bed was also obtained using image processing technique. The results show that the porosity of the sample is 31.28% and the fitting curve for the distribution of pore equivalent diameter follows Gaussian distribution. The velocity profiles do shift as the flow rate varies and the solution flow through the void space is not a homogeneous flow in any pores. The velocity distributions within the pore are roughly parabolic with the local maximum being near the center. About half of the velocity components are in the class of 0-1 cm/s. The frequency of lower velocity components is lower at higher flow rate, but to higher velocity components, it is just the opposite.展开更多
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
Plasma flow control is an active flow control technology that based on the plasma aerodynamic actuation. It can be used to enhance the aerodynamic characteristics of aircraft and propulsion systems. To study the pheno...Plasma flow control is an active flow control technology that based on the plasma aerodynamic actuation. It can be used to enhance the aerodynamic characteristics of aircraft and propulsion systems. To study the phenomena occurring in plasma aerodynamic actuation and the mechanism of plasma flow control, the induced flow velocity of the plasma aerodynamic actuator is experimentally investigated under a variety of parameter conditions. The results indicate that plasma aerodynamic actuation accelerates the near surface air at velocities of a few meters per second, and there is an angle about 5° between the mainstream and the actuator wall and a spiral vortex is formed when the induced flow is moving along the wall. Besides, with the fixed frequency, the induced flow velocity increases linearly with the applied voltage, but it is insensitive to the frequency when the applied voltage is fixed. And the configuration is an effective factor for the performance of the plasma aerodynamic actuator.展开更多
A loop system was used to investigate the effect of flow velocity on corrosion behavior of AZ91 D magnesium alloy at an elbow of loop system based on array electrode technology by polarization, computational fluid dyn...A loop system was used to investigate the effect of flow velocity on corrosion behavior of AZ91 D magnesium alloy at an elbow of loop system based on array electrode technology by polarization, computational fluid dynamics(CFD) simulation and surface analysis. The experimental results showed that the corrosion rate increased with increasing flow velocity, and a critical flow velocity could exist in the corrosion of AZ91 D magnesium alloy. When flow velocity exceeded the critical flow velocity, fluid hydrodynamics was dominant in the corrosion of AZ91 D magnesium alloy. On the contrary, the electrochemical factors were dominant.展开更多
Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging proces...Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.展开更多
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the K...A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation.展开更多
Summary: The measurement of coronary flow velocity reserve (CFVR) by transthoracic Doppler echocardiography (TTDE) with invasive intracoronary Doppler flow wire technique (ICD) was validated and the pathologica...Summary: The measurement of coronary flow velocity reserve (CFVR) by transthoracic Doppler echocardiography (TTDE) with invasive intracoronary Doppler flow wire technique (ICD) was validated and the pathological factors which influence CFVR in patients with angiographically normal coronary arteries were analyzed. CFVR was determined successfully in left anterior descending artery (LAD) in 37 of 40 patients with angiographically normal coronary arteries (men 22, women 15, age 20-75 years, mean age 54±12 years). Coronary flow velocity was measured in the distal LAD by TTDE with contrast enhancement at baseline and during intravenous adenosine infusion of 110 μg/ kg per min within 48 h after ICD technique. Average peak velocity at baseline (APVb), average peak velocity during hyperemia (APVh) and CFVR determined from TTDE were correlated closely with those from ICD measurements (APVb: y= 0. 64x+ 5. 04, r=0. 86, P〈0. 001; APVh: y=0. 63x+14. 36, r=0.82, P〈0.001; CFVR: y=0.65xq-0.92, r=0.88, P〈0.001). For CFVR measurements, the mean differences between TTDE and ICD methods were 0. 12±0.39. CFVR in patients with history of hypertension was significantly lower than that in patients without history of hypertension (P〈0.05). Intravascular ultrasound (IVUS) was performed in 34 patients. Plaque formation was found in LAD by IVUS in 17 (50%) patients. No significant difference in CFVR was found between the patients without plaque formation (3. 11±0. 49) and those with plaque formation (2. 76±0.53, P=0. 056). It is suggested that TTDE with contrast enhancement provides reliable measurement of APV and CFVR in the distal I.AD. The early stage of atherosclerosis could be detected by IVUS, which may be normal in angiography. CFVR is impaired in patients with history of hypertension compared with that in patients without history of hypertension.展开更多
In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field h...In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.展开更多
The transverse momentum spectra of different types of particles produced in central and peripheral gold–gold(Au–Au)and inelastic proton–proton(pp)collisions at the Relativistic Heavy Ion Collider,as well as in cent...The transverse momentum spectra of different types of particles produced in central and peripheral gold–gold(Au–Au)and inelastic proton–proton(pp)collisions at the Relativistic Heavy Ion Collider,as well as in central and peripheral lead-lead(Pb–Pb)and pp collisions at the Large Hadron Collider,are analyzed by the multi-component standard(Boltzmann–Gibbs,Fermi–Dirac,and Bose–Einstein)distributions.The obtained results from the standard distribution give an approximate agreement with the measured experimental data by the STAR,PHENIX,and ALICE Collaborations.The behavior of the effective(kinetic freeze-out)temperature,transverse flow velocity,and kinetic freeze-out volume for particles with different masses is obtained,which observes the early kinetic freezeout of heavier particles as compared to the lighter particles.The parameters of emissions of different particles are observed to be different,which reveals a direct signature of the mass-dependent differential kinetic freeze-out.It is also observed that the peripheral nucleus–nucleus(AA)and pp collisions at the same center-of-mass energy per nucleon pair are in good agreement in terms of the extracted parameters.展开更多
Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The...Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's (2004) relationship, which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient, K, defined by the ratio of the mean velocity to the maximum velocity, ranges from 0.2 to 0.6. Kang et al's (2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship.展开更多
The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influ...The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.展开更多
Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in bo...Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.展开更多
Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity ...Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.展开更多
基金funded by the National Natural Science Foundation of China(Grant/Award Numbers 62075135 and 61975126)the Science and Technology Innovation Commission of Shenzhen(Grant/Award Numbers JCYJ20190808174819083 and JCYJ20190808175201640)Shenzhen Science and Technology Planning Project(ZDSYS 20210623092006020).
文摘Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions.
基金funding support from the China National Science Foundation(Grant Nos.42072280,U2244215,41172205).
文摘Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow Darcy's law,also known as pre-Darcy flow.The formation of immovable water due to water adsorption on the pore wall is believed to be responsible for the formation of pre-Darcy flow.However,this view lacks direct solid evidence.To investigate the pre-Darcy water flow in clay,head permeability experiments are conducted on six clay samples with different densities.The results indicate that water seepage in clay at low hydraulic gradients does not follow Darcy's law.A clear nonlinear relationship between flow velocity and hydraulic gradient is observed.Water flow in clay can be divided into the pre-Darcy flow and Darcy flow regions by the critical hydraulic gradient,which is 10-12 for the Albic soil with dry density between 1.3 g/cm^(3)and 1.8 g/cm^(3).According to the disjoining pressure theory,immovable water due to water adsorption on the pore wall is the primary reason for water flow deviating from Darcy's law in clay.The results indicate that the percentage of movable water ranges from 39.7%to 59.3%for the six samples at a hydraulic gradient of 1.As the hydraulic gradient increases,the percentage of moveable water also increases.Additionally,there is a strong correlation between the percentage of movable water and the variation in hydraulic conductivity with the hydraulic gradient.Furthermore,a quantitative relationship between the percentage of movable water and the hydraulic conductivity has been established.The results of this study suggest that water adsorption on the pore wall not only affects the water movability,but is also closely related to the pre-Darcy flow phenomenon in clay.
文摘Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment.
基金National Natural Science Foundation of Sichuan Province(Project No.:2022NSFSC1645)Key R&D Program Project of Xinjiang Province(Project No.:2023B02020)National Agricultural Science and Technology Innovation System Sichuan Characteristic Vegetable Innovation Team Project,Sichuan Innovation Team Program of CARS(Project No.:SCCXTD-2024-22)。
文摘In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage.
基金Project (50974033) supported by the National Natural Science Foundation of ChinaProject (N100301002) supported by the Fundamental Research Funds for the Universities, China
文摘A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved.
基金Project(51374035)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National Science&Technology Pillar Program During the Twelfth Five-year Plan PeriodProject(NCET-13-0669)supported by the New Century Excellent Talents in University of Ministry of Education of China
文摘Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at three different flow rates were obtained. To determine the pore-parameter of the porous media, the internal structure of the bed was also obtained using image processing technique. The results show that the porosity of the sample is 31.28% and the fitting curve for the distribution of pore equivalent diameter follows Gaussian distribution. The velocity profiles do shift as the flow rate varies and the solution flow through the void space is not a homogeneous flow in any pores. The velocity distributions within the pore are roughly parabolic with the local maximum being near the center. About half of the velocity components are in the class of 0-1 cm/s. The frequency of lower velocity components is lower at higher flow rate, but to higher velocity components, it is just the opposite.
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
基金Supported by the National High Technology Reserach and Development Program of China("863"program)(2005AA753031)the New Century Educational Talents Plan of Ministry of Education of China(NCET-05-0907)~~
文摘Plasma flow control is an active flow control technology that based on the plasma aerodynamic actuation. It can be used to enhance the aerodynamic characteristics of aircraft and propulsion systems. To study the phenomena occurring in plasma aerodynamic actuation and the mechanism of plasma flow control, the induced flow velocity of the plasma aerodynamic actuator is experimentally investigated under a variety of parameter conditions. The results indicate that plasma aerodynamic actuation accelerates the near surface air at velocities of a few meters per second, and there is an angle about 5° between the mainstream and the actuator wall and a spiral vortex is formed when the induced flow is moving along the wall. Besides, with the fixed frequency, the induced flow velocity increases linearly with the applied voltage, but it is insensitive to the frequency when the applied voltage is fixed. And the configuration is an effective factor for the performance of the plasma aerodynamic actuator.
基金Project(51401151)supported by the National Natural Science Foundation of ChinaProjects(2015T80792,2012M511207)supported by the Postdoctoral Science Foundation of China
文摘A loop system was used to investigate the effect of flow velocity on corrosion behavior of AZ91 D magnesium alloy at an elbow of loop system based on array electrode technology by polarization, computational fluid dynamics(CFD) simulation and surface analysis. The experimental results showed that the corrosion rate increased with increasing flow velocity, and a critical flow velocity could exist in the corrosion of AZ91 D magnesium alloy. When flow velocity exceeded the critical flow velocity, fluid hydrodynamics was dominant in the corrosion of AZ91 D magnesium alloy. On the contrary, the electrochemical factors were dominant.
基金Projects(51175363,51274149)supported by the National Natural Science Foundation of China
文摘Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.
基金Supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50502)the Construction of Shanghai Science and Technology Commission(13DZ2260900)
文摘A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation.
文摘Summary: The measurement of coronary flow velocity reserve (CFVR) by transthoracic Doppler echocardiography (TTDE) with invasive intracoronary Doppler flow wire technique (ICD) was validated and the pathological factors which influence CFVR in patients with angiographically normal coronary arteries were analyzed. CFVR was determined successfully in left anterior descending artery (LAD) in 37 of 40 patients with angiographically normal coronary arteries (men 22, women 15, age 20-75 years, mean age 54±12 years). Coronary flow velocity was measured in the distal LAD by TTDE with contrast enhancement at baseline and during intravenous adenosine infusion of 110 μg/ kg per min within 48 h after ICD technique. Average peak velocity at baseline (APVb), average peak velocity during hyperemia (APVh) and CFVR determined from TTDE were correlated closely with those from ICD measurements (APVb: y= 0. 64x+ 5. 04, r=0. 86, P〈0. 001; APVh: y=0. 63x+14. 36, r=0.82, P〈0.001; CFVR: y=0.65xq-0.92, r=0.88, P〈0.001). For CFVR measurements, the mean differences between TTDE and ICD methods were 0. 12±0.39. CFVR in patients with history of hypertension was significantly lower than that in patients without history of hypertension (P〈0.05). Intravascular ultrasound (IVUS) was performed in 34 patients. Plaque formation was found in LAD by IVUS in 17 (50%) patients. No significant difference in CFVR was found between the patients without plaque formation (3. 11±0. 49) and those with plaque formation (2. 76±0.53, P=0. 056). It is suggested that TTDE with contrast enhancement provides reliable measurement of APV and CFVR in the distal I.AD. The early stage of atherosclerosis could be detected by IVUS, which may be normal in angiography. CFVR is impaired in patients with history of hypertension compared with that in patients without history of hypertension.
文摘In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.
基金supported by the National Natural Science Foundation of China(Nos.11575103 and 11947418)the Chinese Government Scholarship(China Scholarship Council)+2 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)(No.201802017)the Shanxi Provincial Natural Science Foundation(No.201901D111043)the Fund for Shanxi‘‘1331 Project’’Key Subjects Construction。
文摘The transverse momentum spectra of different types of particles produced in central and peripheral gold–gold(Au–Au)and inelastic proton–proton(pp)collisions at the Relativistic Heavy Ion Collider,as well as in central and peripheral lead-lead(Pb–Pb)and pp collisions at the Large Hadron Collider,are analyzed by the multi-component standard(Boltzmann–Gibbs,Fermi–Dirac,and Bose–Einstein)distributions.The obtained results from the standard distribution give an approximate agreement with the measured experimental data by the STAR,PHENIX,and ALICE Collaborations.The behavior of the effective(kinetic freeze-out)temperature,transverse flow velocity,and kinetic freeze-out volume for particles with different masses is obtained,which observes the early kinetic freezeout of heavier particles as compared to the lighter particles.The parameters of emissions of different particles are observed to be different,which reveals a direct signature of the mass-dependent differential kinetic freeze-out.It is also observed that the peripheral nucleus–nucleus(AA)and pp collisions at the same center-of-mass energy per nucleon pair are in good agreement in terms of the extracted parameters.
基金the National Natural Science Foundation of China (50221903, 50309007)
文摘Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's (2004) relationship, which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient, K, defined by the ratio of the mean velocity to the maximum velocity, ranges from 0.2 to 0.6. Kang et al's (2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship.
基金supported by the National Natural Science Foundation of China (Grants No.50879019,50909036,and 50879020)the Research Fund for the Doctoral Program of Higher Education (Grants No.200802940001 and 200802941028)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No.2010B02214,2009B08014,and 2010B14214)the Natural Science Foundation of Hohai University(Grant No. 2008426411)the Jiangsu "333" Program for High Level Talents (Grant No. 2017-B08038)the National Undergraduate Innovation Training Plan (Grant No.G20101106)
文摘The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.
基金the State Key Basic Research Program of China (No. 2012CB214905)Key Program of National Natural Science Foundation of China (No. 500834006)the National Natural Science Foundation of China (No. 50974119) for financial support
文摘Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.
基金supported by the National Natural Science Foundation of China (Grant No. 40771026)the NSFC-RFBR project (Grant No. 40911120089, 08-05-92206 NSFCa)
文摘Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.