Flow and thermal field of a parallel flow vortex tube has been simulated and analyzed numerically. A secondary zone model is found at the core region near the inlet to the middle of the vortex tube. Blockage effect du...Flow and thermal field of a parallel flow vortex tube has been simulated and analyzed numerically. A secondary zone model is found at the core region near the inlet to the middle of the vortex tube. Blockage effect due to a narrow area of the hot exit has deflected air flow towards the cold exit, caused expansion and compression at the cold and hot outlet, respectively. The cooling and heating effect due to energy separation is contributed by expansion and compression of air near the outlet. Coeficient of performance (COP) for a refrigerator is higher as cold mass fraction increases due to a higher temperature difference and cold mass flow rate.展开更多
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derive...In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.展开更多
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boun...In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.展开更多
In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pr...In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pressure distribution measurement along the wall, the flow separation is found at the top wall of the second S duct for the baseline inlet design, which yields a high flow distortion at the exit plane. To improve the flow uniformity, a single array of vortex generators (VGs) is employed within the inlet. In this experimental study, the effects of mass flow ratio, free stream Mach number, angle of attack and yaw on the performance of a serpentine inlet instrumented with VGs are obtained. Results indicate: (1) Compared with the baseline serpentine design without flow control, the application of the VGs promotes the mixing of core flow and the low momentum flow in the boundary layer and thus prevents the flow separation. Under the design condition, the exit flow distortion (-↑△σ0) decreases from 11.7% to 2.3% by using the VGs. (2) With the descent of the free stream Mach number the total pressure loss decreases. However, the circular total pressure distortion increases. When the angle of attack rises from - 4° to 8°, the total pressure recovery and the circular total pressure distortion both go down. In addition, with the increase of yaw the total pressure recovery is fairly constant, while the circular total pressure distortion ascends gradually. (3) When Mao = 0.6-0.8, a = -4°-8° and β = 0°-6°, the total pressure recovery varies between 0.936 and 0. 961, the circular total pressure distortion coefficient varies between 1.4 % and 5.4 % and the synthesis distortion coefficient has a ranges from 3.8 % to 7.0 %. The experimental results confirm the excellent performance of the newly designed serpentine inlet incorporating VGs.展开更多
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model...The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.展开更多
A new hybrid model, which is based on domain decomposition and proposed by the authors is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2~18)respectively.Th...A new hybrid model, which is based on domain decomposition and proposed by the authors is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2~18)respectively.The vortex motion patterns in asymmetric regime,single pair(or transverse)regime and double pair(or diagonal)regime are successfully simulated.The calculated drag and inertial force coefficients are in better agreement with experimental data than other recent computational results.展开更多
A gate valve is one of the main elements of a circular pipeline, but the flow characteristics around the gate valve are hardly known. In this study, clarification of the flow field in front of the gate valve model in ...A gate valve is one of the main elements of a circular pipeline, but the flow characteristics around the gate valve are hardly known. In this study, clarification of the flow field in front of the gate valve model in a pipe flow via flow visualization and PIV analysis was attempted. As a result, four kinds of steady necklace-type vortex systems, 2-vortex, 4-vortex, 6-vortex and 8-vortex systems, were clearly observed in a Reynolds number between 290 and 2130. In addition, the main vortex was observed in the Reynolds number range between 2130 and 4870 with difficulty. On this account, both the center position and vorticity in the main vortex are presented against Reynolds number.展开更多
To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε tur...To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.展开更多
The concept vortex force in aerodynamics is sys- tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and ...The concept vortex force in aerodynamics is sys- tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector. In this paper, the underlying physics of this theory is explored, including the general role of the Lamb vector in non- linear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerody-namic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization.展开更多
An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate v...An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate values of the scaling lengths associated with vortex shedding and shear layer frequencies to predict the power law relationship with Reynolds number. The predicted results are in good agreement with experimental results. The findings will provide a greater insight into the overall phenomenon involved.展开更多
At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect ...At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan's wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite element approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be more pronounced with the increase of the span length and can be weakened in the presence of the axial tension.展开更多
The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing c...The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing changes significantly in a wide range of the angle of attack. For the vortical flow at moderate angle of attack, the secondary and tertiary vortices are weakened or suppressed, and the total lift is almost unchanged. For the stalled flow at high angle of attack, the leading edge concentrated vortex is recovered, and the lift is enhanced with increasing suction rate. For the bluff-body flow at even high angles of attack, the lift can still be improved. The concentrated vortex disappears on the upper surface, and the load increment is nearly unchanged along the chordwise direction.展开更多
In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flo...In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.展开更多
A robust iterative method suitable for the numerical simulation of high angle-of-attack vortex flows is established based upon the multiple line-vortex model(MLVM).With symmetric or asymmetric positions of sep- aratio...A robust iterative method suitable for the numerical simulation of high angle-of-attack vortex flows is established based upon the multiple line-vortex model(MLVM).With symmetric or asymmetric positions of sep- aration lines given,the first converged solution at an angle of attack as high as 60 degree is obtained by means of the present method.Numerical experiments for a tangent-ogive forebody indicate the viscous onset mechanism of asymmetric vortex flows over a body of revolution at high angles of attack and zero sideslip.展开更多
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and...By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.展开更多
Wave ray theory is employed to study features of propagation pathways(rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing t...Wave ray theory is employed to study features of propagation pathways(rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind(RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.展开更多
The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the hole...The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects.In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III,the typical Kármán vortices partially or totally disappear,and some new vortex shedding patterns appear, such as-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.展开更多
The Excitation of Alfven wave in dusty plasma with vortex flows is investigated. The coupled equations for density and electromagnetic potential of dusty plasma with vortex-flow were obtained. The stability and amplit...The Excitation of Alfven wave in dusty plasma with vortex flows is investigated. The coupled equations for density and electromagnetic potential of dusty plasma with vortex-flow were obtained. The stability and amplitude behavior were studied both analytically and numerically. Using a non-modal method, it was found that the presence of dust can suppress the growth of the instability which can also be affected by the vortex eccentricity.展开更多
Since the classical investigation of the Taylor vortex by G. I. Taylor in 1923, many researchers have studied the Taylor vortex as one of the most important vortex types in flow. In this study, the inner cylinder is r...Since the classical investigation of the Taylor vortex by G. I. Taylor in 1923, many researchers have studied the Taylor vortex as one of the most important vortex types in flow. In this study, the inner cylinder is rotating, while the outer cylinder, which is concentric with the inner cylinder, is stationary. In addition, the measurement of the velocity distribution is carried out by the PIV (Particle Image Velocimetry) method. The radius of the inner cylinder is 20 mm, and that of the outer cylinder is 30 mm. In this study, Re = 650-1,200 is assumed. In the upper part of the apparatus, movable ends are fixed to the upper and lower sides of the cylinder to change the aspect ratio. The aspect ratio is defined as the ratio of cylinder height to gap distance. A servo motor to rotate the inner cylinder, a servo-motor control device, a servo amplifier for rotation speed control, and a YAG laser light source are installed in the apparatus. For the visualization of Taylor vortex flow, aluminum powder composed of scale like fine particles is used. As tracer particles used in the PIV method, fluorescent particles with a size of 48 Ixm were used. The governing equations are Navier-Stokes equations with cylindrical coordinates (r, θ, z) and the equations of continuity. Each physical value is nondimensionalized using the angular velocity of the inner cylinder as the representative velocity, and the radius difference between the inner and outer cylinders as the representative length. Discretization of the governing equations is based on the MAC method. The results of EFD and CFD (computational fluid dynamics) are compared. The mode bifurcation is observed, and the flow structure is investigated.展开更多
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhanc...The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.展开更多
文摘Flow and thermal field of a parallel flow vortex tube has been simulated and analyzed numerically. A secondary zone model is found at the core region near the inlet to the middle of the vortex tube. Blockage effect due to a narrow area of the hot exit has deflected air flow towards the cold exit, caused expansion and compression at the cold and hot outlet, respectively. The cooling and heating effect due to energy separation is contributed by expansion and compression of air near the outlet. Coeficient of performance (COP) for a refrigerator is higher as cold mass fraction increases due to a higher temperature difference and cold mass flow rate.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z356 and No.2007AA09Z313)
文摘In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.
基金the National Natural Science Foundation of China (50509022, 10532070)Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-L02)
文摘In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.
文摘In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pressure distribution measurement along the wall, the flow separation is found at the top wall of the second S duct for the baseline inlet design, which yields a high flow distortion at the exit plane. To improve the flow uniformity, a single array of vortex generators (VGs) is employed within the inlet. In this experimental study, the effects of mass flow ratio, free stream Mach number, angle of attack and yaw on the performance of a serpentine inlet instrumented with VGs are obtained. Results indicate: (1) Compared with the baseline serpentine design without flow control, the application of the VGs promotes the mixing of core flow and the low momentum flow in the boundary layer and thus prevents the flow separation. Under the design condition, the exit flow distortion (-↑△σ0) decreases from 11.7% to 2.3% by using the VGs. (2) With the descent of the free stream Mach number the total pressure loss decreases. However, the circular total pressure distortion increases. When the angle of attack rises from - 4° to 8°, the total pressure recovery and the circular total pressure distortion both go down. In addition, with the increase of yaw the total pressure recovery is fairly constant, while the circular total pressure distortion ascends gradually. (3) When Mao = 0.6-0.8, a = -4°-8° and β = 0°-6°, the total pressure recovery varies between 0.936 and 0. 961, the circular total pressure distortion coefficient varies between 1.4 % and 5.4 % and the synthesis distortion coefficient has a ranges from 3.8 % to 7.0 %. The experimental results confirm the excellent performance of the newly designed serpentine inlet incorporating VGs.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509178 and 51509177)the Natural Science Foundation of Tianjin City(Grant No.14JCYBJC22100)the Natural Science Foundation of Tianjin Education Commission(Grant No.2017KJ046)
文摘The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.
基金The project supported by the National Natural Science Foundations of China the LNM,Institute of Mechanics,Academia Sinica
文摘A new hybrid model, which is based on domain decomposition and proposed by the authors is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2~18)respectively.The vortex motion patterns in asymmetric regime,single pair(or transverse)regime and double pair(or diagonal)regime are successfully simulated.The calculated drag and inertial force coefficients are in better agreement with experimental data than other recent computational results.
文摘A gate valve is one of the main elements of a circular pipeline, but the flow characteristics around the gate valve are hardly known. In this study, clarification of the flow field in front of the gate valve model in a pipe flow via flow visualization and PIV analysis was attempted. As a result, four kinds of steady necklace-type vortex systems, 2-vortex, 4-vortex, 6-vortex and 8-vortex systems, were clearly observed in a Reynolds number between 290 and 2130. In addition, the main vortex was observed in the Reynolds number range between 2130 and 4870 with difficulty. On this account, both the center position and vorticity in the main vortex are presented against Reynolds number.
基金This project is supported by Scientific Research Foundation of Ministry of Education of China for Returnee.
文摘To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.
基金the National Natural Science Foundation of China(10572005).
文摘The concept vortex force in aerodynamics is sys- tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector. In this paper, the underlying physics of this theory is explored, including the general role of the Lamb vector in non- linear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerody-namic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization.
文摘An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate values of the scaling lengths associated with vortex shedding and shear layer frequencies to predict the power law relationship with Reynolds number. The predicted results are in good agreement with experimental results. The findings will provide a greater insight into the overall phenomenon involved.
基金This Project was fincianlly supported by the National Natural Science Foundation of China (Grant No. 50379050)
文摘At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan's wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite element approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be more pronounced with the increase of the span length and can be weakened in the presence of the axial tension.
基金the National Natural Science Foundation of China (19802018).
文摘The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing changes significantly in a wide range of the angle of attack. For the vortical flow at moderate angle of attack, the secondary and tertiary vortices are weakened or suppressed, and the total lift is almost unchanged. For the stalled flow at high angle of attack, the leading edge concentrated vortex is recovered, and the lift is enhanced with increasing suction rate. For the bluff-body flow at even high angles of attack, the lift can still be improved. The concentrated vortex disappears on the upper surface, and the load increment is nearly unchanged along the chordwise direction.
基金This project was financially supported by the High Technology Research and Developmant Programof China (GrantNo.2006AA09Z356) the National Natural Science Foundation of China (Grant No.503795)
文摘In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.
文摘A robust iterative method suitable for the numerical simulation of high angle-of-attack vortex flows is established based upon the multiple line-vortex model(MLVM).With symmetric or asymmetric positions of sep- aration lines given,the first converged solution at an angle of attack as high as 60 degree is obtained by means of the present method.Numerical experiments for a tangent-ogive forebody indicate the viscous onset mechanism of asymmetric vortex flows over a body of revolution at high angles of attack and zero sideslip.
文摘By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.
基金sponsored by the National Natural Science Foundation of China (Grant No.41430426)
文摘Wave ray theory is employed to study features of propagation pathways(rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind(RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.
基金supported by the National Key Scientific Instrument and Equipment Development Program of China (Grant 2011YQ120048)
文摘The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects.In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III,the typical Kármán vortices partially or totally disappear,and some new vortex shedding patterns appear, such as-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.
基金National Natural Science Foundation of China(Nos.4336052 and 10375063)
文摘The Excitation of Alfven wave in dusty plasma with vortex flows is investigated. The coupled equations for density and electromagnetic potential of dusty plasma with vortex-flow were obtained. The stability and amplitude behavior were studied both analytically and numerically. Using a non-modal method, it was found that the presence of dust can suppress the growth of the instability which can also be affected by the vortex eccentricity.
文摘Since the classical investigation of the Taylor vortex by G. I. Taylor in 1923, many researchers have studied the Taylor vortex as one of the most important vortex types in flow. In this study, the inner cylinder is rotating, while the outer cylinder, which is concentric with the inner cylinder, is stationary. In addition, the measurement of the velocity distribution is carried out by the PIV (Particle Image Velocimetry) method. The radius of the inner cylinder is 20 mm, and that of the outer cylinder is 30 mm. In this study, Re = 650-1,200 is assumed. In the upper part of the apparatus, movable ends are fixed to the upper and lower sides of the cylinder to change the aspect ratio. The aspect ratio is defined as the ratio of cylinder height to gap distance. A servo motor to rotate the inner cylinder, a servo-motor control device, a servo amplifier for rotation speed control, and a YAG laser light source are installed in the apparatus. For the visualization of Taylor vortex flow, aluminum powder composed of scale like fine particles is used. As tracer particles used in the PIV method, fluorescent particles with a size of 48 Ixm were used. The governing equations are Navier-Stokes equations with cylindrical coordinates (r, θ, z) and the equations of continuity. Each physical value is nondimensionalized using the angular velocity of the inner cylinder as the representative velocity, and the radius difference between the inner and outer cylinders as the representative length. Discretization of the governing equations is based on the MAC method. The results of EFD and CFD (computational fluid dynamics) are compared. The mode bifurcation is observed, and the flow structure is investigated.
基金Sponsored by the National Nature Science Foundation of China (11202102,11172140)
文摘The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.